Package: ewoc 0.3.0

Marcio A. Diniz

ewoc: Escalation with Overdose Control

An implementation of a variety of escalation with overdose control designs introduced by Babb, Rogatko and Zacks (1998) <doi:10.1002/(SICI)1097-0258(19980530)17:10%3C1103::AID-SIM793%3E3.0.CO;2-9>. It calculates the next dose as a clinical trial proceeds and performs simulations to obtain operating characteristics.

Authors:Marcio A. Diniz <marcio.diniz@cshs.org>

ewoc_0.3.0.tar.gz
ewoc_0.3.0.tar.gz(r-4.5-noble)ewoc_0.3.0.tar.gz(r-4.4-noble)
ewoc_0.3.0.tgz(r-4.4-emscripten)ewoc_0.3.0.tgz(r-4.3-emscripten)
ewoc.pdf |ewoc.html
ewoc/json (API)
NEWS

# Install 'ewoc' in R:
install.packages('ewoc', repos = 'https://cloud.r-project.org')

Bug tracker:https://github.com/dnzmarcio/ewoc/issues

Uses libs:
  • jags– Just Another Gibbs Sampler for Bayesian MCMC
  • c++– GNU Standard C++ Library v3

On CRAN:

Conda:

jagscpp

1.70 score 1 stars 200 downloads 27 exports 38 dependencies

Last updated 5 years agofrom:38b0441625. Checks:1 OK, 2 NOTE. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKMar 17 2025
R-4.5-linuxNOTEMar 17 2025
R-4.4-linuxNOTEMar 17 2025

Exports:dlt_curve_d1classicaldlt_curve_d1extendeddlt_curve_d1phdlt_rateewoc_d1classicalewoc_d1extendedewoc_d1phewoc_simulationinv_standard_doselogitmtd_biasmtd_msemtd_rho_d1extendedopcoptimal_mtdoptimal_toxicitypdlt_d1classicalpdlt_d1extendedpdlt_d1phresponse_d1classicalresponse_d1extendedresponse_d1phstandard_dosestop_rulestop_rule_d1classicalstop_rule_d1extendedstop_rule_d1ph

Dependencies:clicodacodetoolscolorspacedigestdoParalleldoRNGfansifarverforeachFormulaggplot2gluegtableisobanditeratorslabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigR6RColorBrewerrjagsrlangrngtoolsscalestibbleutf8vctrsviridisLitewithr

Citation

To cite package ‘ewoc’ in publications use:

Diniz MA (2020). ewoc: Escalation with Overdose Control. R package version 0.3.0, https://CRAN.R-project.org/package=ewoc.

ATTENTION: This citation information has been auto-generated from the package DESCRIPTION file and may need manual editing, see ‘help("citation")’.

Corresponding BibTeX entry:

  @Manual{,
    title = {ewoc: Escalation with Overdose Control},
    author = {Marcio A. Diniz},
    year = {2020},
    note = {R package version 0.3.0},
    url = {https://CRAN.R-project.org/package=ewoc},
  }

Readme and manuals

EWOC

Escalation With Overdose Control is a dose escalation design for phase I clinical trials such that the probability of overdose is controlled explicitly.

It was first introduced by Babb et al. (1998) and several modifications have been studied along of the years. This R-package has three available designs: the classical EWOC introduced by Babb et al. (1998), the proportional hazards model in discussed Tighioaurt (2014), and the extended parametrization presented by Tighioaurt et al (2017).

Installation

Before installing the R-package EWOC, you may need to install Just Another Gibbs Sampler.

The R-package EWOC can be installed from GitHub with:

# install.packages("devtools")
devtools::install_github("dnzmarcio/ewoc")

Example

A new dose using the classical EWOC can be calculated:

library(ewoc)
DLT <- 0
dose <- 30
test <- ewoc_d1classic(DLT ~ dose, type = 'discrete',
                       theta = 0.33, alpha = 0.25,
                       min_dose = 0, max_dose = 100,
                       dose_set = seq(0, 100, 20),
                       rho_prior = matrix(1, ncol = 2, nrow = 1),
                       mtd_prior = matrix(1, ncol = 2, nrow = 1),
                       rounding = "nearest")
summary(test)
#> Conditions
#>   Minimum Dose Maximum Dose Theta Alpha Number of patients
#> 1            0          100  0.33  0.25                  1
#> 
#> Next Dose
#>   Estimate         95% HPD
#> 1       40 (12.87 ; 98.77)
#> 
#> P(DLT| next dose)
#>   Estimate      95% HPD
#> 1      0.3 (0.07 ; 0.7)

In addition, simulations also can be performed to evaluate a design:

library(ewoc)
DLT <- 0
dose <- 20
step_zero <- ewoc_d1classical(DLT ~ dose, type = 'discrete',
                            theta = 0.33, alpha = 0.25,
                            min_dose = 20, max_dose = 100,
                            dose_set = seq(0, 100, 20),
                            rho_prior = matrix(1, ncol = 2, nrow = 1),
                            mtd_prior = matrix(1, ncol = 2, nrow = 1),
                            rounding = "nearest")
response_sim <- response_d1classical(rho = 0.05, mtd = 60, theta = 0.33,
                                   min_dose = 20, max_dose = 100)
sim <- ewoc_simulation(step_zero = step_zero,
                        n_sim = 1, sample_size = 30,
                        alpha_strategy = "conditional",
                        response_sim = response_sim,
                        ncores = 1)
pdlt <- pdlt_d1classical(rho = 0.05, mtd = 60, theta = 0.33,
                      min_dose = 20, max_dose = 100)
results <- opc(sim_list = list(sim), pdlt_list = list(pdlt),
    mtd_list = list(60), toxicity_margin = 0.05, mtd_margin = 6)

References

Babb, J., Rogatko, A., & Zacks, S. (1998). Cancer phase I clinical trials: efficient dose escalation with overdose control. Statistics in medicine, 17(10), 1103-1120.

Tighiouart, M., Liu, Y., & Rogatko, A. (2014). Escalation with overdose control using time to toxicity for cancer phase I clinical trials. PloS one, 9(3), e93070.

Tighiouart, M., Cook-Wiens, G., & Rogatko, A. (2018). A Bayesian adaptive design for cancer phase I trials using a flexible range of doses. Journal of biopharmaceutical statistics, 28(3), 562-574.

Diniz, M. A., Tighiouart, M., & Rogatko, A. (2019). Comparison between continuous and discrete doses for model based designs in cancer dose finding. PloS one, 14(1).

Help Manual

Help pageTopics
Accuracy Indexaccuracy_index
Average Toxicity Numberaverage_toxicity
Plot the DLT curve based on the EWOC classical modeldlt_curve_d1classical
Plot the DLT curve based on the EWOC extended modeldlt_curve_d1extended
Plot the DLT curve based on the EWOC proportional hazards modeldlt_curve_d1ph
Evaluation of the DLT ratedlt_rate
Escalation With Overdose Controlewoc_d1classical
Escalation With Overdose Controlewoc_d1extended
Escalation With Overdose Controlewoc_d1ph
EWOC simulationewoc_simulation
Inverse standardization of the doseinv_standard_dose
Logitlogit
Bias of the MTD estimatesmtd_bias
Mean Square Error of the MTD estimatesmtd_mse
Convert mtd to rho_1 and vice-versamtd_rho_d1extended
Operating characteristics for EWOC simulationsopc
Percent of doses in relation the optimal MTD intervaloptimal_mtd
Percent of doses in relation the optimal toxicity intervaloptimal_toxicity
Generating a probability of DLT function based on the EWOC classical modelpdlt_d1classical
Generating a probability of DLT function based on the EWOC extended modelpdlt_d1extended
Generating a probability of DLT function based on the EWOC Proportional Hazards modelpdlt_d1ph
Generating a binary response function based on the EWOC classical modelresponse_d1classical
Generating a binary response function based on the EWOC extended modelresponse_d1extended
Generating a response function based on the EWOC Proportional Hazards modelresponse_d1ph
Standardization of the dosestandard_dose
Evaluation of the stopping rulestop_rule
Generating a stop rule function for EWOC classical modelstop_rule_d1classical
Generating a stop rule function for EWOC extended modelstop_rule_d1extended
Generating a stop rule function for EWOC proportional hazards modelstop_rule_d1ph