Package: elmNNRcpp 1.0.4

Lampros Mouselimis

elmNNRcpp: The Extreme Learning Machine Algorithm

Training and predict functions for Single Hidden-layer Feedforward Neural Networks (SLFN) using the Extreme Learning Machine (ELM) algorithm. The ELM algorithm differs from the traditional gradient-based algorithms for very short training times (it doesn't need any iterative tuning, this makes learning time very fast) and there is no need to set any other parameters like learning rate, momentum, epochs, etc. This is a reimplementation of the 'elmNN' package using 'RcppArmadillo' after the 'elmNN' package was archived. For more information, see "Extreme learning machine: Theory and applications" by Guang-Bin Huang, Qin-Yu Zhu, Chee-Kheong Siew (2006), Elsevier B.V, <doi:10.1016/j.neucom.2005.12.126>.

Authors:Lampros Mouselimis [aut, cre], Alberto Gosso [aut], Edwin de Jonge [ctb]

elmNNRcpp_1.0.4.tar.gz
elmNNRcpp_1.0.4.tar.gz(r-4.5-noble)elmNNRcpp_1.0.4.tar.gz(r-4.4-noble)
elmNNRcpp_1.0.4.tgz(r-4.4-emscripten)elmNNRcpp_1.0.4.tgz(r-4.3-emscripten)
elmNNRcpp.pdf |elmNNRcpp.html
elmNNRcpp/json (API)
NEWS

# Install 'elmNNRcpp' in R:
install.packages('elmNNRcpp', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/mlampros/elmnnrcpp/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library

openblascppopenmp

4.32 score 7 packages 39 scripts 590 downloads 2 mentions 4 exports 3 dependencies

Last updated 3 years agofrom:54cc6e6f8e. Checks:OK: 1 NOTE: 1. Indexed: no.

TargetResultDate
Doc / VignettesOKDec 13 2024
R-4.5-linux-x86_64NOTEDec 13 2024

Exports:elmelm_predictelm_trainonehot_encode

Dependencies:KernelKnnRcppRcppArmadillo

Extreme Learning Machine

Rendered fromextreme_learning_machine.Rmdusingknitr::rmarkdownon Dec 13 2024.

Last update: 2018-07-21
Started: 2018-07-05