Package: elmNNRcpp 1.0.4

Lampros Mouselimis

elmNNRcpp: The Extreme Learning Machine Algorithm

Training and predict functions for Single Hidden-layer Feedforward Neural Networks (SLFN) using the Extreme Learning Machine (ELM) algorithm. The ELM algorithm differs from the traditional gradient-based algorithms for very short training times (it doesn't need any iterative tuning, this makes learning time very fast) and there is no need to set any other parameters like learning rate, momentum, epochs, etc. This is a reimplementation of the 'elmNN' package using 'RcppArmadillo' after the 'elmNN' package was archived. For more information, see "Extreme learning machine: Theory and applications" by Guang-Bin Huang, Qin-Yu Zhu, Chee-Kheong Siew (2006), Elsevier B.V, <doi:10.1016/j.neucom.2005.12.126>.

Authors:Lampros Mouselimis [aut, cre], Alberto Gosso [aut], Edwin de Jonge [ctb]

elmNNRcpp_1.0.4.tar.gz
elmNNRcpp_1.0.4.tar.gz(r-4.5-noble)elmNNRcpp_1.0.4.tar.gz(r-4.4-noble)
elmNNRcpp_1.0.4.tgz(r-4.4-emscripten)elmNNRcpp_1.0.4.tgz(r-4.3-emscripten)
elmNNRcpp.pdf |elmNNRcpp.html
elmNNRcpp/json (API)
NEWS

# Install 'elmNNRcpp' in R:
install.packages('elmNNRcpp', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/mlampros/elmnnrcpp/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library

openblascppopenmp

4.91 score 7 packages 39 scripts 433 downloads 2 mentions 4 exports 3 dependencies

Last updated 3 years agofrom:54cc6e6f8e. Checks:1 OK, 1 NOTE. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKJan 12 2025
R-4.5-linux-x86_64NOTEJan 12 2025

Exports:elmelm_predictelm_trainonehot_encode

Dependencies:KernelKnnRcppRcppArmadillo

Extreme Learning Machine

Rendered fromextreme_learning_machine.Rmdusingknitr::rmarkdownon Jan 12 2025.

Last update: 2018-07-21
Started: 2018-07-05