Title: | The Extreme Learning Machine Algorithm |
---|---|
Description: | Training and predict functions for Single Hidden-layer Feedforward Neural Networks (SLFN) using the Extreme Learning Machine (ELM) algorithm. The ELM algorithm differs from the traditional gradient-based algorithms for very short training times (it doesn't need any iterative tuning, this makes learning time very fast) and there is no need to set any other parameters like learning rate, momentum, epochs, etc. This is a reimplementation of the 'elmNN' package using 'RcppArmadillo' after the 'elmNN' package was archived. For more information, see "Extreme learning machine: Theory and applications" by Guang-Bin Huang, Qin-Yu Zhu, Chee-Kheong Siew (2006), Elsevier B.V, <doi:10.1016/j.neucom.2005.12.126>. |
Authors: | Lampros Mouselimis [aut, cre] , Alberto Gosso [aut], Edwin de Jonge [ctb] (<https://orcid.org/0000-0002-6580-4718>, Github Contributor) |
Maintainer: | Lampros Mouselimis <[email protected]> |
License: | GPL (>= 2) |
Version: | 1.0.4 |
Built: | 2024-12-13 06:52:50 UTC |
Source: | CRAN |
Formula interface for elm_train
, transforms a data frame and formula
into the necessary input for elm_train, automatically calls onehot_encode
for classification.
elm( formula, data, nhid, actfun, init_weights = "normal_gaussian", bias = FALSE, moorep_pseudoinv_tol = 0.01, leaky_relu_alpha = 0, seed = 1, verbose = FALSE )
elm( formula, data, nhid, actfun, init_weights = "normal_gaussian", bias = FALSE, moorep_pseudoinv_tol = 0.01, leaky_relu_alpha = 0, seed = 1, verbose = FALSE )
formula |
formula used to specify the regression or classification. |
data |
data.frame with the data |
nhid |
a numeric value specifying the hidden neurons. Must be >= 1 |
actfun |
a character string specifying the type of activation function. It should be one of the following : 'sig' ( sigmoid ), 'sin' ( sine ), 'radbas' ( radial basis ), 'hardlim' ( hard-limit ), 'hardlims' ( symmetric hard-limit ), 'satlins' ( satlins ), 'tansig' ( tan-sigmoid ), 'tribas' ( triangular basis ), 'relu' ( rectifier linear unit ) or 'purelin' ( linear ) |
init_weights |
a character string spcecifying the distribution from which the input-weights and the bias should be initialized. It should be one of the following : 'normal_gaussian' (normal / Gaussian distribution with zero mean and unit variance), 'uniform_positive' ( in the range [0,1] ) or 'uniform_negative' ( in the range [-1,1] ) |
bias |
either TRUE or FALSE. If TRUE then bias weights will be added to the hidden layer |
moorep_pseudoinv_tol |
a numeric value. See the references web-link for more details on Moore-Penrose pseudo-inverse and specifically on the pseudo inverse tolerance value |
leaky_relu_alpha |
a numeric value between 0.0 and 1.0. If 0.0 then a simple relu ( f(x) = 0.0 for x < 0, f(x) = x for x >= 0 ) activation function will be used, otherwise a leaky-relu ( f(x) = alpha * x for x < 0, f(x) = x for x >= 0 ). It is applicable only if actfun equals to 'relu' |
seed |
a numeric value specifying the random seed. Defaults to 1 |
verbose |
a boolean. If TRUE then information will be printed in the console |
elm object which can be used with predict, residuals and fitted.
elm(Species ~ ., data = iris, nhid = 20, actfun="sig") mod_elm <- elm(Species ~ ., data = iris, nhid = 20, actfun="sig") # predict classes predict(mod_elm, newdata = iris[1:3,-5]) # predict probabilities predict(mod_elm, newdata = iris[1:3,-5], type="prob") # predict elm output predict(mod_elm, newdata = iris[1:3,-5], type="raw") data("Boston") elm(medv ~ ., data = Boston, nhid = 40, actfun="relu") data("ionosphere") elm(class ~ ., data = ionosphere, nhid=20, actfun="relu")
elm(Species ~ ., data = iris, nhid = 20, actfun="sig") mod_elm <- elm(Species ~ ., data = iris, nhid = 20, actfun="sig") # predict classes predict(mod_elm, newdata = iris[1:3,-5]) # predict probabilities predict(mod_elm, newdata = iris[1:3,-5], type="prob") # predict elm output predict(mod_elm, newdata = iris[1:3,-5], type="raw") data("Boston") elm(medv ~ ., data = Boston, nhid = 40, actfun="relu") data("ionosphere") elm(class ~ ., data = ionosphere, nhid=20, actfun="relu")
Extreme Learning Machine predict function
elm_predict(elm_train_object, newdata, normalize = FALSE)
elm_predict(elm_train_object, newdata, normalize = FALSE)
elm_train_object |
it should be the output of the elm_train function |
newdata |
an input matrix with number of columns equal to the x parameter of the elm_train function |
normalize |
a boolean specifying if the output predictions in case of classification should be normalized. If TRUE then the values of each row of the output-probability-matrix that are less than 0 and greater than 1 will be pushed to the [0,1] range |
library(elmNNRcpp) #----------- # Regression #----------- data(Boston, package = 'KernelKnn') Boston = as.matrix(Boston) dimnames(Boston) = NULL x = Boston[, -ncol(Boston)] y = matrix(Boston[, ncol(Boston)], nrow = length(Boston[, ncol(Boston)]), ncol = 1) out_regr = elm_train(x, y, nhid = 20, actfun = 'purelin', init_weights = 'uniform_negative') pr_regr = elm_predict(out_regr, x) #--------------- # Classification #--------------- data(ionosphere, package = 'KernelKnn') x_class = ionosphere[, -c(2, ncol(ionosphere))] x_class = as.matrix(x_class) dimnames(x_class) = NULL y_class = as.numeric(ionosphere[, ncol(ionosphere)]) y_class_onehot = onehot_encode(y_class - 1) # class labels should begin from 0 out_class = elm_train(x_class, y_class_onehot, nhid = 20, actfun = 'relu') pr_class = elm_predict(out_class, x_class, normalize = TRUE)
library(elmNNRcpp) #----------- # Regression #----------- data(Boston, package = 'KernelKnn') Boston = as.matrix(Boston) dimnames(Boston) = NULL x = Boston[, -ncol(Boston)] y = matrix(Boston[, ncol(Boston)], nrow = length(Boston[, ncol(Boston)]), ncol = 1) out_regr = elm_train(x, y, nhid = 20, actfun = 'purelin', init_weights = 'uniform_negative') pr_regr = elm_predict(out_regr, x) #--------------- # Classification #--------------- data(ionosphere, package = 'KernelKnn') x_class = ionosphere[, -c(2, ncol(ionosphere))] x_class = as.matrix(x_class) dimnames(x_class) = NULL y_class = as.numeric(ionosphere[, ncol(ionosphere)]) y_class_onehot = onehot_encode(y_class - 1) # class labels should begin from 0 out_class = elm_train(x_class, y_class_onehot, nhid = 20, actfun = 'relu') pr_class = elm_predict(out_class, x_class, normalize = TRUE)
Extreme Learning Machine training function
elm_train( x, y, nhid, actfun, init_weights = "normal_gaussian", bias = FALSE, moorep_pseudoinv_tol = 0.01, leaky_relu_alpha = 0, seed = 1, verbose = FALSE )
elm_train( x, y, nhid, actfun, init_weights = "normal_gaussian", bias = FALSE, moorep_pseudoinv_tol = 0.01, leaky_relu_alpha = 0, seed = 1, verbose = FALSE )
x |
a matrix. The columns of the input matrix should be of type numeric |
y |
a matrix. In case of regression the matrix should have n rows and 1 column. In case of classification it should consist of n rows and n columns, where n > 1 and equals to the number of the unique labels. |
nhid |
a numeric value specifying the hidden neurons. Must be >= 1 |
actfun |
a character string specifying the type of activation function. It should be one of the following : 'sig' ( sigmoid ), 'sin' ( sine ), 'radbas' ( radial basis ), 'hardlim' ( hard-limit ), 'hardlims' ( symmetric hard-limit ), 'satlins' ( satlins ), 'tansig' ( tan-sigmoid ), 'tribas' ( triangular basis ), 'relu' ( rectifier linear unit ) or 'purelin' ( linear ) |
init_weights |
a character string spcecifying the distribution from which the input-weights and the bias should be initialized. It should be one of the following : 'normal_gaussian' (normal / Gaussian distribution with zero mean and unit variance), 'uniform_positive' ( in the range [0,1] ) or 'uniform_negative' ( in the range [-1,1] ) |
bias |
either TRUE or FALSE. If TRUE then bias weights will be added to the hidden layer |
moorep_pseudoinv_tol |
a numeric value. See the references web-link for more details on Moore-Penrose pseudo-inverse and specifically on the pseudo inverse tolerance value |
leaky_relu_alpha |
a numeric value between 0.0 and 1.0. If 0.0 then a simple relu ( f(x) = 0.0 for x < 0, f(x) = x for x >= 0 ) activation function will be used, otherwise a leaky-relu ( f(x) = alpha * x for x < 0, f(x) = x for x >= 0 ). It is applicable only if actfun equals to 'relu' |
seed |
a numeric value specifying the random seed. Defaults to 1 |
verbose |
a boolean. If TRUE then information will be printed in the console |
The input matrix should be of type numeric. This means the user should convert any character, factor or boolean columns to numeric values before using the elm_train function
http://arma.sourceforge.net/docs.html
https://en.wikipedia.org/wiki/Moore
https://www.kaggle.com/robertbm/extreme-learning-machine-example
http://rt.dgyblog.com/ml/ml-elm.html
library(elmNNRcpp) #----------- # Regression #----------- data(Boston, package = 'KernelKnn') Boston = as.matrix(Boston) dimnames(Boston) = NULL x = Boston[, -ncol(Boston)] y = matrix(Boston[, ncol(Boston)], nrow = length(Boston[, ncol(Boston)]), ncol = 1) out_regr = elm_train(x, y, nhid = 20, actfun = 'purelin', init_weights = 'uniform_negative') #--------------- # Classification #--------------- data(ionosphere, package = 'KernelKnn') x_class = ionosphere[, -c(2, ncol(ionosphere))] x_class = as.matrix(x_class) dimnames(x_class) = NULL y_class = as.numeric(ionosphere[, ncol(ionosphere)]) y_class_onehot = onehot_encode(y_class - 1) # class labels should begin from 0 out_class = elm_train(x_class, y_class_onehot, nhid = 20, actfun = 'relu')
library(elmNNRcpp) #----------- # Regression #----------- data(Boston, package = 'KernelKnn') Boston = as.matrix(Boston) dimnames(Boston) = NULL x = Boston[, -ncol(Boston)] y = matrix(Boston[, ncol(Boston)], nrow = length(Boston[, ncol(Boston)]), ncol = 1) out_regr = elm_train(x, y, nhid = 20, actfun = 'purelin', init_weights = 'uniform_negative') #--------------- # Classification #--------------- data(ionosphere, package = 'KernelKnn') x_class = ionosphere[, -c(2, ncol(ionosphere))] x_class = as.matrix(x_class) dimnames(x_class) = NULL y_class = as.numeric(ionosphere[, ncol(ionosphere)]) y_class_onehot = onehot_encode(y_class - 1) # class labels should begin from 0 out_class = elm_train(x_class, y_class_onehot, nhid = 20, actfun = 'relu')
One-hot-encoding of the labels in case of classification
onehot_encode(y)
onehot_encode(y)
y |
a numeric vector consisting of the response variable labels. The minimum value of the unique labels should begin from 0 |
library(elmNNRcpp) y = sample(0:3, 100, replace = TRUE) y_expand = onehot_encode(y)
library(elmNNRcpp) y = sample(0:3, 100, replace = TRUE) y_expand = onehot_encode(y)
Wrapper for elm_predict
.
## S3 method for class 'elm' predict(object, newdata, type = c("class", "prob", "raw"), ...)
## S3 method for class 'elm' predict(object, newdata, type = c("class", "prob", "raw"), ...)
object |
elm model fitted with |
newdata |
data.frame with the new data |
type |
only used with classification, can be either "class", "prob", "raw", which are class (vector), probability (matrix) or the output of the elm function (matrix). |
... |
not used |
predicted values