Package: bsamGP 1.2.5

Beomjo Park

bsamGP: Bayesian Spectral Analysis Models using Gaussian Process Priors

Contains functions to perform Bayesian inference using a spectral analysis of Gaussian process priors. Gaussian processes are represented with a Fourier series based on cosine basis functions. Currently the package includes parametric linear models, partial linear additive models with/without shape restrictions, generalized linear additive models with/without shape restrictions, and density estimation model. To maximize computational efficiency, the actual Markov chain Monte Carlo sampling for each model is done using codes written in FORTRAN 90. This software has been developed using funding supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (no. NRF-2016R1D1A1B03932178 and no. NRF-2017R1D1A3B03035235).

Authors:Seongil Jo [aut, cre], Taeryon Choi [aut], Beomjo Park [aut, cre], Peter J. Lenk [ctb]

bsamGP_1.2.5.tar.gz
bsamGP_1.2.5.tar.gz(r-4.5-noble)bsamGP_1.2.5.tar.gz(r-4.4-noble)
bsamGP.pdf |bsamGP.html
bsamGP/json (API)

# Install 'bsamGP' in R:
install.packages('bsamGP', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • openblas– Optimized BLAS
  • fortran– Runtime library for GNU Fortran applications
Datasets:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

fortranopenblas

1.70 score 35 scripts 389 downloads 14 exports 29 dependencies

Last updated 10 months agofrom:50569d7012. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKDec 14 2024
R-4.5-linux-x86_64OKDec 14 2024

Exports:blqblrbsadbsaqbsaqdpmbsarbsarBigbsardpmfsgblrgbsarintgratintsimrald

Dependencies:clicolorspacefansifarverggplot2gluegridExtragtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigR6RColorBrewerrlangscalestibbleutf8vctrsviridisLitewithr

Readme and manuals

Help Manual

Help pageTopics
Bayesian Quantile Regressionblq
Bayesian Linear Regressionblr
Bayesian Semiparametric Density Estimationbsad
Bayesian Shape-Restricted Spectral Analysis Quantile Regressionbsaq
Bayesian Shape-Restricted Spectral Analysis Quantile Regression with Dirichlet Process Mixture Errorsbsaqdpm
Bayesian Shape-Restricted Spectral Analysis Regressionbsar
Bayesian Spectral Analysis Regression for Big databsarBig
Bayesian Shape-Restricted Spectral Analysis Regression with Dirichlet Process Mixture Errorsbsardpm
Cadmium dose-response meta datacadmium
Electricity demand dataElec.demand
Compute fitted values for a blm objectfitted.blm
Compute fitted values for a bsad objectfitted.bsad
Compute fitted values for a bsam objectfitted.bsam
Compute fitted values for a bsamdpm objectfitted.bsamdpm
Specify a Fourier Basis Fit in a BSAM Formulafs
Generalized Bayesian Linear Modelsgblr
Bayesian Shape-Restricted Spectral Analysis for Generalized Partial Linear Modelsgbsar
Numerical integration using a simple Trapezoidal ruleintgrat
Numerical integration using Simpson's ruleintsim
Daily Moratlity in LondonLondon.Mortality
A Data Set for Plasma Levels of Retinol and Beta-Caroteneplasma
Plot a blm objectplot.blm
Plot a bsad objectplot.bsad
Plot a bsam objectplot.bsam
Plot a bsamdpm objectplot.bsamdpm
Plot a fitted.bsad objectplot.fitted.bsad
Plot a fitted.bsam objectplot.fitted.bsam
Plot a fitted.bsamdpm objectplot.fitted.bsamdpm
Predict method for a blm objectpredict.blm
Predict method for a bsam objectpredict.bsam
Predict method for a bsamdpm objectpredict.bsamdpm
The asymmetric Laplace distributionrald
Monthly traffic accidents datatraffic
Wage-Union datawage.union