Package: bonsaiforest 0.1.1

Isaac Gravestock

bonsaiforest: Shrinkage Based Forest Plots

Subgroup analyses are routinely performed in clinical trial analyses. From a methodological perspective, two key issues of subgroup analyses are multiplicity (even if only predefined subgroups are investigated) and the low sample sizes of subgroups which lead to highly variable estimates, see e.g. Yusuf et al (1991) <doi:10.1001/jama.1991.03470010097038>. This package implements subgroup estimates based on Bayesian shrinkage priors, see Carvalho et al (2019) <https://proceedings.mlr.press/v5/carvalho09a.html>. In addition, estimates based on penalized likelihood inference are available, based on Simon et al (2011) <doi:10.18637/jss.v039.i05>. The corresponding shrinkage based forest plots address the aforementioned issues and can complement standard forest plots in practical clinical trial analyses.

Authors:Mar Vazquez Rabunal [aut], Daniel Sabanés Bové [aut], Marcel Wolbers [aut], Isaac Gravestock [cre], F. Hoffmann-La Roche AG [cph, fnd]

bonsaiforest_0.1.1.tar.gz
bonsaiforest_0.1.1.tar.gz(r-4.5-noble)bonsaiforest_0.1.1.tar.gz(r-4.4-noble)
bonsaiforest_0.1.1.tgz(r-4.4-emscripten)bonsaiforest_0.1.1.tgz(r-4.3-emscripten)
bonsaiforest.pdf |bonsaiforest.html
bonsaiforest/json (API)
NEWS

# Install 'bonsaiforest' in R:
install.packages('bonsaiforest', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/insightsengineering/bonsaiforest/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library
Datasets:

openblascppopenmp

2.30 score 7 scripts 173 downloads 16 exports 103 dependencies

Last updated 2 months agofrom:ca4e0b4513. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKNov 27 2024
R-4.5-linux-x86_64OKNov 27 2024

Exports:ahr_estimationahr_from_kmcompareelastic_netgenerate_stacked_datahorseshoelor_estimationnaivenaivepoppreprocesssimul_covariatessimul_datasimul_pfssubgroupssurvival_curvestrt_horseshoe

Dependencies:abindbackportsbase64encbayesplotBHbridgesamplingbriobrmsBrobdingnagbroomcallrcheckmateclicodacodetoolscolorspacecpp11crayondescdiffobjdigestdistributionaldplyrevaluatefansifarverfastmapforcatsforeachfsfuturefuture.applygbmgenericsggplot2ggridgesglmnetglobalsgluegridExtragtablehtmltoolsinlineisobanditeratorsjsonlitelabelinglatticelifecyclelistenvloomagrittrMASSMatrixmatrixStatsmgcvmunsellmvtnormnleqslvnlmenumDerivparallellypillarpkgbuildpkgconfigpkgloadplyrposteriorpraiseprocessxpspurrrQuickJSRR6RColorBrewerRcppRcppArmadilloRcppEigenRcppParallelreshape2rlangrprojrootrstanrstantoolsscalesshapesplines2StanHeadersstringistringrsurvivaltensorAtestthattibbletidyrtidyselectutf8vctrsvdiffrviridisLitewaldowithrxml2

Introduction

Rendered fromintroduction.Rmdusingknitr::rmarkdownon Nov 27 2024.

Last update: 2024-06-18
Started: 2024-06-18

Readme and manuals

Help Manual

Help pageTopics
Average Hazard Ratio Estimationahr_estimation
Average Hazard Estimation based on Kaplan-Meier Estimatesahr_from_km
Compare Treatment Estimate Methodscompare
Design Dummy Subgroup x_1adesign_dummy1
Design Matrix Subgroup x_1adesign_matrix1
Elastic Net Penalization Model Estimationelastic_net
Elastic Net Fit Binaryelastic_net_fit_bin
Elastic Net Fit Survivalelastic_net_fit_surv
H0, Coefficients Elastic Net Survival Model and Matriceselastic_net_surv
Estimated coefficients elastic net Binaryest_coef_bin1
Example dataexample_data
Generation of Stacked Data by Subgroupsgenerate_stacked_data
Bayesian Shrinkage Model Estimationhorseshoe
Horseshoe Fit Binaryhorseshoe_fit_bin
Horseshoe Fit Survivalhorseshoe_fit_surv
Estimation of Log-Odds Ratiolor_estimation
Naive Model Estimationnaive
Naive Fit Binarynaive_fit_bin
Naive Fit Survivalnaive_fit_surv
Naive Overall Population Model Estimationnaivepop
Naivepop Fit Binarynaivepop_fit_bin
Naivepop Fit Survivalnaivepop_fit_surv
Compare Forest Plotsplot.compare.data
Forest plot Summary Elastic Netplot.summary.elastic_net
Forest plot Summary Horseshoeplot.summary.horseshoe
Forest plot Summary Naiveplot.summary.naive
Data Preprocessingpreprocess
Print Function for Elastic Net Summaryprint.summary.elastic_net
Print Function for Horseshoe Summaryprint.summary.horseshoe
Print Function for Naive Summaryprint.summary.naive
Print Function for Naivepop Summaryprint.summary.naivepop
Generation of a Design Matrix for Simulationssimul_covariates
Simulate Covariates and Progression Free Survival Datasimul_data
Simulation of Progression Free Survival Timessimul_pfs
Subgroup Treatment Effectsubgroups
Summary Elastic Net Functionsummary.elastic_net
Summary Horseshoe Functionsummary.horseshoe
Summary Naivesummary.naive
Summary Naivepop Functionsummary.naivepop
Average Survival Curvessurvival_curves
Subgroup Treatment Effect Horseshoetrt_horseshoe