Package: SlideCNA 0.1.0

Diane Zhang

SlideCNA: Calls Copy Number Alterations from Slide-Seq Data

This takes spatial single-cell-type RNA-seq data (specifically designed for Slide-seq v2) that calls copy number alterations (CNAs) using pseudo-spatial binning, clusters cellular units (e.g. beads) based on CNA profile, and visualizes spatial CNA patterns. Documentation about 'SlideCNA' is included in the the pre-print by Zhang et al. (2022, <doi:10.1101/2022.11.25.517982>). The package 'enrichR' (>= 3.0), conditionally used to annotate SlideCNA-determined clusters with gene ontology terms, can be installed at <https://github.com/wjawaid/enrichR> or with install_github("wjawaid/enrichR").

Authors:Diane Zhang [aut, cre], Johanna Klughammer [aut], Jan Watter [aut], Broad Institute of MIT and Harvard [cph, fnd]

SlideCNA_0.1.0.tar.gz
SlideCNA_0.1.0.tar.gz(r-4.5-noble)SlideCNA_0.1.0.tar.gz(r-4.4-noble)
SlideCNA_0.1.0.tgz(r-4.4-emscripten)SlideCNA_0.1.0.tgz(r-4.3-emscripten)
SlideCNA.pdf |SlideCNA.html
SlideCNA/json (API)
NEWS

# Install 'SlideCNA' in R:
install.packages('SlideCNA', repos = 'https://cloud.r-project.org')

On CRAN:

Conda:r-slidecna-0.1.0(2025-03-25)

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.70 score 200 downloads 28 exports 193 dependencies

Last updated 2 months agofrom:fdea2a492e. Checks:3 OK. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKMar 25 2025
R-4.5-linuxOKMar 25 2025
R-4.4-linuxOKMar 25 2025

Exports::=%>%binbin_metadatacenter_rmclone_socnv_heatmapdat_to_longfind_cluster_markersfind_go_termsget_num_clustlong_to_binmake_seurat_annotmake_so_binmean_cnv_plotmodeplot_clonesprepprep_cnv_datquantile_plotref_adjrun_enrichrrun_slide_cnascale_nUMIscalefitSpatialPlotweight_rollmeanweight_rollmean_sub

Dependencies:abindaskpassbackportsbase64encBHbitopsbootbroombslibcachemcarcarDatacaToolscliclustercodetoolscolorspacecommonmarkcorrplotcowplotcpp11crayoncrosstalkcurldata.tabledeldirdendextendDerivdigestdoBydotCall64dplyrdqrngDTellipseemmeansestimabilityevaluatefactoextraFactoMineRfansifarverfastDummiesfastmapfitdistrplusflashClustFNNfontawesomeformatRFormulafsfutile.loggerfutile.optionsfuturefuture.applygenericsggplot2ggpubrggrepelggridgesggsciggsignifglobalsgluegoftestgplotsgridExtragtablegtoolsherehighrhtmltoolshtmlwidgetshttpuvhttricaigraphirlbaisobandjquerylibjsonliteKernSmoothknitrlabelinglambda.rlaterlatticelazyevalleapsleidenbaselifecyclelistenvlme4lmtestmagrittrMASSMatrixMatrixModelsmatrixStatsmemoisemgcvmicrobenchmarkmimeminiUIminqamltoolsmodelrmultcompViewmunsellmvtnormnlmenloptrnnetnumDerivopensslparallellypatchworkpbapplypbkrtestpheatmappillarpkgconfigplotlyplyrpngpolyclippolynomprogressrpromisespurrrquantregR6RANNrappdirsrbibutilsRColorBrewerRcppRcppAnnoyRcppArmadilloRcppEigenRcppHNSWRcppProgressRcppTOMLRdpackreformulasreshape2reticulaterlangrmarkdownROCRrprojrootRSpectrarstatixRtsnesassscalesscattermorescatterplot3dsctransformSeuratSeuratObjectshinysitmosourcetoolsspspamSparseMspatstat.dataspatstat.explorespatstat.geomspatstat.randomspatstat.sparsespatstat.univarspatstat.utilsstringistringrsurvivalsystensortibbletidyrtidyselecttinytexutf8uwotvctrsviridisviridisLitewithrxfunxtableyamlzoo

Citation

To cite package ‘SlideCNA’ in publications use:

Zhang D, Klughammer J, Watter J (2025). SlideCNA: Calls Copy Number Alterations from Slide-Seq Data. R package version 0.1.0, https://CRAN.R-project.org/package=SlideCNA.

Corresponding BibTeX entry:

  @Manual{,
    title = {SlideCNA: Calls Copy Number Alterations from Slide-Seq
      Data},
    author = {Diane Zhang and Johanna Klughammer and Jan Watter},
    year = {2025},
    note = {R package version 0.1.0},
    url = {https://CRAN.R-project.org/package=SlideCNA},
  }

Readme and manuals

SlideCNA

Introduction

SlideCNA is a method to call copy number alterations (CNA) from spatial transcriptomics data (adapted for Slide-seq data). SlideCNA uses expression smoothing across the genome to extract changes in copy number and implements a spatio-molecular binning process to boost signal and consolidate reads. Based on the CNA profiles, SlideCNA can identify clusters across space.

Example Jupyter notebooks of SlideCNA applied to Slide-seq, snRNA-seq, and Slide-seq with TACCO bead splitting data are available here: https://github.com/dkzhang777/SlideCNA_Analysis.

Installation
New Conda Environment

Create a new conda environment using the SlideCNA_env.yml file from the SlideCNA repository:

conda env create -f "https://github.com/dkzhang777/SlideCNA/blob/main/inst/SlideCNA_env.yml"

Install SlideCNA through R from Github:

library(devtools)
devtools::install_github("dkzhang777/SlideCNA@main", force=TRUE)
library(SlideCNA)
Preparation

Preparation of Slide-seq data raw counts matrix and meta data with cell type annotations. Metadata should contain the following columns in the provided format:

bc (chr): bead labels
cluster_type (chr): annotation of the bead as 'Normal' (Non-malignant) or 'Malignant'

and, if using spatially-aware binning:

pos_x (dbl): x-coordinate bead position
pos_y (dbl): y-coordinate bead position

Running SlideCNA
run_slide_cna(counts, 
              beads_df, 
              gene_pos, 
              output_directory, 
              plot_directory,
              spatial=TRUE,
              roll_mean_window=101,
              avg_bead_per_bin=12,
              pos=TRUE, 
              pos_k=55, 
              ex_k=1)
Parameter Descriptions

counts (data.frame): raw counts (genes x beads)
beads_df (data.frame): annotations of each bead (beads x annotations); contains columns 'bc' for bead names, 'cluster_type' for annotations of 'Normal' or 'Malignant', 'pos_x' for x-coordinate bead positions, and 'pos_y' for y-coordinate bead positions
gene_pos (data.frame): table with columns for GENE, chr, start, end, rel_gene_pos (1 : # of genes on chromosome)
output_directory (char): output directory path
plot_directory (char): output plot directory path
spatial (bool): TRUE if using spatial information FALSE if not
roll_mean_window (int): integer number of adjacent genes for which to average over in pyramidal weighting scheme
avg_bead_per_bin (int): integer of average number of beads there should be per bin
pos (bool): TRUE if doing spatial and expressional binning, FALSE if just expressional binning
pos_k (numeric): positional weight
ex_k (numeric): expressional weight

Results

Results will appear in output_directory and plot_directory. Key output files are described below:

so.rds Seurat object of Slide-seq data
md.txt metadata of Slide-seq data with Seurat annotations
md_bin.txt metadata of binned Slide-seq data
dat_bin_scaled.txt CNA scores of binned Slide-seq data after applying pyramidal weighting scheme to expression values and normalizing for UMI per bin used for CNA score heat maps and CNA-based clustering
best_k_malig.rds value of optimal number of malignant clusters
cluster_labels_all.txt cluster assignments when performing cluster designation on all binned beads
cluster_labels_malig.txt cluster assignments when performing cluster determination on only malignant binned beads
cluster_markers_all.txt DEGs per cluster when performing cluster designation on all binned beads
cluster_markers_malig.txt DEGs per cluster when performing cluster determination on only malignant binned beads
go_terms_all.txt GO terms per cluster when performing cluster designation on all binned beads
go_terms_malig.txt GO terms per cluster when performing cluster determination on only malignant binned beads

Help Manual

Help pageTopics
Subfunction of bin_metadata() for expression/positional binningbin
Spatio-molecular binning of relative expression intensitiesbin_metadata
Center expression intensitiescenter_rm
Add clone information to meta data of seurat object and bin the beadsclone_so
Plot CNV scores on a heat mapcnv_heatmap
Convert data to long format and add in metadatadat_to_long
Find and plot top n DEGs per clusterfind_cluster_markers
Find and plot top n GO-enriched terms per clusterfind_go_terms
Find optimal number of clustersget_num_clust
Convert to wide bin x genes + metadata formatlong_to_bin
Creation of Seurat objectmake_seurat_annot
Make a binned version of a Seurat objectmake_so_bin
Plot mean CNV scores per bin and per chromosomemean_cnv_plot
Subfunction of long_to_bin() that finds mode of vector/columnmode
Plot cluster/clone informationplot_clones
Infercnv-based preparation of relative gene expression intensitiesprep
Prepare data for CNV heat mapprep_cnv_dat
Plot CNV score quantiles per bin and per chromosomequantile_plot
Adjust for Reference (Normal) Beadsref_adj
Subfunction to get significantly enriched GO terms given a set of signfiicant beads and genesrun_enrichr
Run SlideCNA workflowrun_slide_cna
Scale for nUMI (UMI Count) to generate CNV scoresscale_nUMI
Subfunction for scale_nUMI that normalizes a given bin for UMI count and centers the mean CNV score at 1scalefit
Spatial plots of meta dataSpatialPlot
Expressional smoothing along a chromosome using a weighted pyramidal moving averageweight_rollmean
Subfunction of weight_rollmeanweight_rollmean_sub