Package: SlideCNA 0.1.0
SlideCNA: Calls Copy Number Alterations from Slide-Seq Data
This takes spatial single-cell-type RNA-seq data (specifically designed for Slide-seq v2) that calls copy number alterations (CNAs) using pseudo-spatial binning, clusters cellular units (e.g. beads) based on CNA profile, and visualizes spatial CNA patterns. Documentation about 'SlideCNA' is included in the the pre-print by Zhang et al. (2022, <doi:10.1101/2022.11.25.517982>). The package 'enrichR' (>= 3.0), conditionally used to annotate SlideCNA-determined clusters with gene ontology terms, can be installed at <https://github.com/wjawaid/enrichR> or with install_github("wjawaid/enrichR").
Authors:
SlideCNA_0.1.0.tar.gz
SlideCNA_0.1.0.tar.gz(r-4.5-noble)SlideCNA_0.1.0.tar.gz(r-4.4-noble)
SlideCNA_0.1.0.tgz(r-4.4-emscripten)SlideCNA_0.1.0.tgz(r-4.3-emscripten)
SlideCNA.pdf |SlideCNA.html✨
SlideCNA/json (API)
NEWS
# Install 'SlideCNA' in R: |
install.packages('SlideCNA', repos = 'https://cloud.r-project.org') |
Conda:r-slidecna-0.1.0(2025-03-25)
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 2 months agofrom:fdea2a492e. Checks:3 OK. Indexed: no.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 25 2025 |
R-4.5-linux | OK | Mar 25 2025 |
R-4.4-linux | OK | Mar 25 2025 |
Exports::=%>%binbin_metadatacenter_rmclone_socnv_heatmapdat_to_longfind_cluster_markersfind_go_termsget_num_clustlong_to_binmake_seurat_annotmake_so_binmean_cnv_plotmodeplot_clonesprepprep_cnv_datquantile_plotref_adjrun_enrichrrun_slide_cnascale_nUMIscalefitSpatialPlotweight_rollmeanweight_rollmean_sub
Dependencies:abindaskpassbackportsbase64encBHbitopsbootbroombslibcachemcarcarDatacaToolscliclustercodetoolscolorspacecommonmarkcorrplotcowplotcpp11crayoncrosstalkcurldata.tabledeldirdendextendDerivdigestdoBydotCall64dplyrdqrngDTellipseemmeansestimabilityevaluatefactoextraFactoMineRfansifarverfastDummiesfastmapfitdistrplusflashClustFNNfontawesomeformatRFormulafsfutile.loggerfutile.optionsfuturefuture.applygenericsggplot2ggpubrggrepelggridgesggsciggsignifglobalsgluegoftestgplotsgridExtragtablegtoolsherehighrhtmltoolshtmlwidgetshttpuvhttricaigraphirlbaisobandjquerylibjsonliteKernSmoothknitrlabelinglambda.rlaterlatticelazyevalleapsleidenbaselifecyclelistenvlme4lmtestmagrittrMASSMatrixMatrixModelsmatrixStatsmemoisemgcvmicrobenchmarkmimeminiUIminqamltoolsmodelrmultcompViewmunsellmvtnormnlmenloptrnnetnumDerivopensslparallellypatchworkpbapplypbkrtestpheatmappillarpkgconfigplotlyplyrpngpolyclippolynomprogressrpromisespurrrquantregR6RANNrappdirsrbibutilsRColorBrewerRcppRcppAnnoyRcppArmadilloRcppEigenRcppHNSWRcppProgressRcppTOMLRdpackreformulasreshape2reticulaterlangrmarkdownROCRrprojrootRSpectrarstatixRtsnesassscalesscattermorescatterplot3dsctransformSeuratSeuratObjectshinysitmosourcetoolsspspamSparseMspatstat.dataspatstat.explorespatstat.geomspatstat.randomspatstat.sparsespatstat.univarspatstat.utilsstringistringrsurvivalsystensortibbletidyrtidyselecttinytexutf8uwotvctrsviridisviridisLitewithrxfunxtableyamlzoo
Citation
To cite package ‘SlideCNA’ in publications use:
Zhang D, Klughammer J, Watter J (2025). SlideCNA: Calls Copy Number Alterations from Slide-Seq Data. R package version 0.1.0, https://CRAN.R-project.org/package=SlideCNA.
Corresponding BibTeX entry:
@Manual{, title = {SlideCNA: Calls Copy Number Alterations from Slide-Seq Data}, author = {Diane Zhang and Johanna Klughammer and Jan Watter}, year = {2025}, note = {R package version 0.1.0}, url = {https://CRAN.R-project.org/package=SlideCNA}, }
Readme and manuals
SlideCNA
Introduction
SlideCNA is a method to call copy number alterations (CNA) from spatial transcriptomics data (adapted for Slide-seq data). SlideCNA uses expression smoothing across the genome to extract changes in copy number and implements a spatio-molecular binning process to boost signal and consolidate reads. Based on the CNA profiles, SlideCNA can identify clusters across space.
Example Jupyter notebooks of SlideCNA applied to Slide-seq, snRNA-seq, and Slide-seq with TACCO bead splitting data are available here: https://github.com/dkzhang777/SlideCNA_Analysis.
Installation
New Conda Environment
Create a new conda environment using the SlideCNA_env.yml file from the SlideCNA repository:
conda env create -f "https://github.com/dkzhang777/SlideCNA/blob/main/inst/SlideCNA_env.yml"
Install SlideCNA through R from Github:
library(devtools)
devtools::install_github("dkzhang777/SlideCNA@main", force=TRUE)
library(SlideCNA)
Preparation
Preparation of Slide-seq data raw counts matrix and meta data with cell type annotations. Metadata should contain the following columns in the provided format:
bc (chr): bead labels
cluster_type (chr): annotation of the bead as 'Normal' (Non-malignant) or 'Malignant'
and, if using spatially-aware binning:
pos_x (dbl): x-coordinate bead position
pos_y (dbl): y-coordinate bead position
Running SlideCNA
run_slide_cna(counts,
beads_df,
gene_pos,
output_directory,
plot_directory,
spatial=TRUE,
roll_mean_window=101,
avg_bead_per_bin=12,
pos=TRUE,
pos_k=55,
ex_k=1)
Parameter Descriptions
counts
(data.frame): raw counts (genes x beads) beads_df
(data.frame): annotations of each bead (beads x annotations); contains columns 'bc' for bead names, 'cluster_type' for annotations of 'Normal' or 'Malignant', 'pos_x' for x-coordinate bead positions, and 'pos_y' for y-coordinate bead positions gene_pos
(data.frame): table with columns for GENE, chr, start, end, rel_gene_pos (1 : # of genes on chromosome)output_directory
(char): output directory pathplot_directory
(char): output plot directory pathspatial
(bool): TRUE if using spatial information FALSE if notroll_mean_window
(int): integer number of adjacent genes for which to average over in pyramidal weighting schemeavg_bead_per_bin
(int): integer of average number of beads there should be per binpos
(bool): TRUE if doing spatial and expressional binning, FALSE if just expressional binningpos_k
(numeric): positional weightex_k
(numeric): expressional weight
Results
Results will appear in output_directory and plot_directory. Key output files are described below:
so.rds
Seurat object of Slide-seq data md.txt
metadata of Slide-seq data with Seurat annotations md_bin.txt
metadata of binned Slide-seq data dat_bin_scaled.txt
CNA scores of binned Slide-seq data after applying pyramidal weighting scheme to expression values and normalizing for UMI per bin used for CNA score heat maps and CNA-based clustering best_k_malig.rds
value of optimal number of malignant clusters cluster_labels_all.txt
cluster assignments when performing cluster designation on all binned beads cluster_labels_malig.txt
cluster assignments when performing cluster determination on only malignant binned beads cluster_markers_all.txt
DEGs per cluster when performing cluster designation on all binned beads cluster_markers_malig.txt
DEGs per cluster when performing cluster determination on only malignant binned beads go_terms_all.txt
GO terms per cluster when performing cluster designation on all binned beads go_terms_malig.txt
GO terms per cluster when performing cluster determination on only malignant binned beads