Package: Sieve 2.1

Tianyu Zhang

Sieve: Nonparametric Estimation by the Method of Sieves

Performs multivariate nonparametric regression/classification by the method of sieves (using orthogonal basis). The method is suitable for moderate high-dimensional features (dimension < 100). The l1-penalized sieve estimator, a nonparametric generalization of Lasso, is adaptive to the feature dimension with provable theoretical guarantees. We also include a nonparametric stochastic gradient descent estimator, Sieve-SGD, for online or large scale batch problems. Details of the methods can be found in: <arxiv:2206.02994> <arxiv:2104.00846><arXiv:2310.12140>.

Authors:Tianyu Zhang

Sieve_2.1.tar.gz
Sieve_2.1.tar.gz(r-4.5-noble)Sieve_2.1.tar.gz(r-4.4-noble)
Sieve_2.1.tgz(r-4.4-emscripten)Sieve_2.1.tgz(r-4.3-emscripten)
Sieve.pdf |Sieve.html
Sieve/json (API)

# Install 'Sieve' in R:
install.packages('Sieve', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

openblascpp

1.70 score 34 scripts 141 downloads 8 exports 13 dependencies

Last updated 1 years agofrom:0ca9b04664. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKDec 12 2024
R-4.5-linux-x86_64OKDec 12 2024

Exports:create_index_matrixGenSamplessieve_predictsieve_preprocesssieve_solversieve.sgd.predictsieve.sgd.preprocesssieve.sgd.solver

Dependencies:codetoolscombinatforeachglmnetiteratorslatticeMASSMatrixRcppRcppArmadilloRcppEigenshapesurvival