
Package: Sieve (via r-universe)
October 13, 2024

Type Package

Title Nonparametric Estimation by the Method of Sieves

Version 2.1

Date 2023-10-19

Author Tianyu Zhang

Maintainer Tianyu Zhang <tianyuz3@andrew.cmu.edu>

Description Performs multivariate nonparametric
regression/classification by the method of sieves (using
orthogonal basis). The method is suitable for moderate
high-dimensional features (dimension < 100). The l1-penalized
sieve estimator, a nonparametric generalization of Lasso, is
adaptive to the feature dimension with provable theoretical
guarantees. We also include a nonparametric stochastic gradient
descent estimator, Sieve-SGD, for online or large scale batch
problems. Details of the methods can be found in:
<arXiv:2206.02994> <arXiv:2104.00846><arXiv:2310.12140>.

License GPL-2

Imports Rcpp, combinat, glmnet, methods, MASS

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 7.2.3

Encoding UTF-8

NeedsCompilation yes

Repository CRAN

Date/Publication 2023-10-19 14:10:02 UTC

Contents
Sieve-package . 2
clean_up_result . 4
create_index_matrix . 4
GenSamples . 5

1

https://arxiv.org/abs/2206.02994
https://arxiv.org/abs/2104.00846
https://arxiv.org/abs/2310.12140

2 Sieve-package

sieve.sgd.predict . 6
sieve.sgd.preprocess . 7
sieve.sgd.solver . 9
sieve_predict . 10
sieve_preprocess . 11
sieve_solver . 14

Index 16

Sieve-package Nonparametric Estimation by the Method of Sieves

Description

Performs multivariate nonparametric regression/classification by the method of sieves (using or-
thogonal basis). The method is suitable for moderate high-dimensional features (dimension < 100).
The l1-penalized sieve estimator, a nonparametric generalization of Lasso, is adaptive to the feature
dimension with provable theoretical guarantees. We also include a nonparametric stochastic gradi-
ent descent estimator, Sieve-SGD, for online or large scale batch problems. Details of the methods
can be found in: <arXiv:2206.02994> <arXiv:2104.00846><arXiv:2310.12140>.

Details

The DESCRIPTION file:

Package: Sieve
Type: Package
Title: Nonparametric Estimation by the Method of Sieves
Version: 2.1
Date: 2023-10-19
Author: Tianyu Zhang
Maintainer: Tianyu Zhang <tianyuz3@andrew.cmu.edu>
Description: Performs multivariate nonparametric regression/classification by the method of sieves (using orthogonal basis). The method is suitable for moderate high-dimensional features (dimension < 100). The l1-penalized sieve estimator, a nonparametric generalization of Lasso, is adaptive to the feature dimension with provable theoretical guarantees. We also include a nonparametric stochastic gradient descent estimator, Sieve-SGD, for online or large scale batch problems. Details of the methods can be found in: <arXiv:2206.02994> <arXiv:2104.00846><arXiv:2310.12140>.
License: GPL-2
Imports: Rcpp, combinat, glmnet, methods, MASS
LinkingTo: Rcpp, RcppArmadillo
RoxygenNote: 7.2.3
Encoding: UTF-8

Index of help topics:

GenSamples Generate some simulation/testing samples with
nonlinear truth.

Sieve-package Nonparametric Estimation by the Method of
Sieves

clean_up_result Clean up the fitted model
create_index_matrix Create the index matrix for multivariate

Sieve-package 3

regression
sieve.sgd.predict Sieve-SGD makes prediction with new predictors.
sieve.sgd.preprocess Preprocess the original data for sieve-SGD

estimation.
sieve.sgd.solver Fit sieve-SGD estimators, using progressive

validation for hyperparameter tuning.
sieve_predict Predict the outcome of interest for new samples
sieve_preprocess Preprocess the original data for sieve

estimation.
sieve_solver Calculate the coefficients for the basis

functions

~~ An overview of how to use the ~~ ~~ package, including the most ~~ ~~ important functions ~~

Author(s)

Tianyu Zhang

Maintainer: Tianyu Zhang <tianyuz3@andrew.cmu.edu>

References

Tianyu Zhang and Noah Simon (2022) <arXiv:2206.02994>

Examples

xdim <- 5
basisN <- 1000
type <- 'cosine'

#non-linear additive truth. Half of the features are truly associated with the outcome
TrainData <- GenSamples(s.size = 300, xdim = xdim,

frho = 'additive', frho.para = xdim/2)

#noise-free testing samples
TestData <- GenSamples(s.size = 1e3, xdim = xdim, noise.para = 0,

frho = 'additive', frho.para = xdim/2)

sieve.model <- sieve_preprocess(X = TrainData[,2:(xdim+1)],
basisN = basisN, type = type, interaction_order = 2)

sieve.model <- sieve_solver(sieve.model, TrainData$Y, l1 = TRUE)

sieve_model_prediction <- sieve_predict(testX = TestData[,2:(xdim+1)],
testY = TestData$Y, sieve.model)

4 create_index_matrix

clean_up_result Clean up the fitted model

Description

Clean up the fitted model

Usage

clean_up_result(sieve.model)

Arguments

sieve.model a sieve sgd model.

Value

a processed sieve.model, adding function names and extract the best model

create_index_matrix Create the index matrix for multivariate regression

Description

Create the index matrix for multivariate regression

Usage

create_index_matrix(xdim, basisN = NULL, maxj = NULL, interaction_order = 5)

Arguments

xdim a number. It specifies the predictors’ dimension.

basisN a number. The number of basis function to use.

maxj a number. We use this to specify the largest row product in the index list.
interaction_order

a number The maximum order of interaction. 1 means additive model, 2 means
including pairwise interaction terms, etc.

Value

a matrix. The first column is the product of the indices, the rest columns are the index vectors for
constructing multivariate basis functions.

GenSamples 5

GenSamples Generate some simulation/testing samples with nonlinear truth.

Description

This function is used in several examples in the package.

Usage

GenSamples(
s.size,
xdim = 1,
x.dis = "uniform",
x.para = NULL,
frho = "linear",
frho.para = 100,
y.type = "continuous",
noise.dis = "normal",
noise.para = 0.5

)

Arguments

s.size a number. Sample size.

xdim a number. Dimension of the feature vectors X.

x.dis a string. It specifies the distribution of feature X. The default is uniform distri-
bution over xdim-dimensional unit cube.

x.para extra parameter to specify the feature distribution.

frho a string. It specifies the true regression/log odds functions used to generate the
data set. The default is a linear function.

frho.para extra parameter to specify the true underlying regression/log odds function.

y.type a string. Default is y.type = 'continuous', meaning the outcome is numerical
and the problem is regression. Set it to y.type = 'binary' for binary outcome.

noise.dis a string. For the distribution of the noise variable (under regression probelm
settings). Default is Gaussian distribution.

noise.para a number. It specifies the magnitude of the noise in regression settings.

Value

a data.frame. The variable Y is the outcome (either continuous or binary). Each of the rest of the
variables corresponds to one dimension of the feature vector.

6 sieve.sgd.predict

Examples

xdim <- 1 #1 dimensional feature
#generate 1000 training samples
TrainData <- GenSamples(s.size = 1000, xdim = xdim)
#generate some noise-free testing samples
TestData <- GenSamples(s.size = 1000, xdim = xdim, noise.para = 0)

sieve.sgd.predict Sieve-SGD makes prediction with new predictors.

Description

Sieve-SGD makes prediction with new predictors.

Usage

sieve.sgd.predict(sieve.model, X)

Arguments

sieve.model a list initiated using sieve.sgd.preprocess and sieve.sgd.solver. Check the docu-
mentation of sieve.sgd.preprocess for more information.

X a data frame containing prediction features/ independent variables.

Value

sieve.sgd.predict will update the given sieve.model input list.

inf.list In each entry of the list inf.list, the array prdy is the predicted outcome under
the given hyperparameter combination.

Examples

frho.para <- xdim <- 1 ##predictor dimension
frho <- 'additive' ###truth is a sum of absolute functions
type <- 'cosine' ###use cosine functions as the basis functions
#generate training data
TrainData <- GenSamples(s.size = 1e3, xdim = xdim,

frho.para = frho.para,
frho = frho, noise.para = 0.1)

#preprocess the model
sieve.model <- sieve.sgd.preprocess(X = TrainData[,2:(xdim+1)],

type = type,
s = c(1,2),
r0 = c(0.5, 2, 4),
J = c(1, 4, 8))

##train the model
sieve.model <- sieve.sgd.solver(sieve.model = sieve.model,

sieve.sgd.preprocess 7

X = TrainData[,2:(xdim+1)],
Y = TrainData[,1])

##generate new data
NewData <- GenSamples(s.size = 5e2, xdim = xdim,

frho.para = frho.para,
frho = frho, noise.para = 0.1)

sieve.model <- sieve.sgd.predict(sieve.model, X = NewData[, 2:(xdim+1)])
plot(NewData[, 2:(xdim+1)], sieve.model$best_model$prdy)

sieve.sgd.preprocess Preprocess the original data for sieve-SGD estimation.

Description

Preprocess the original data for sieve-SGD estimation.

Usage

sieve.sgd.preprocess(
X,
s = c(2),
r0 = c(2),
J = c(1),
type = c("cosine"),
interaction_order = c(3),
omega = c(0.51),
norm_feature = TRUE,
norm_para = NULL,
lower_q = 0.005,
upper_q = 0.995

)

Arguments

X a data frame containing prediction features/ independent variables. The (i,j)-th
element is the j-th dimension of the i-th sample’s feature vector. So the num-
ber of rows equals to the sample size and the number of columns equals to the
feature/covariate dimension. If the complete data set is large, this can be a rep-
resentative subset of it (ideally have more than 1000 samples).

s numerical array. Smoothness parameter, a smaller s corresponds to a more flex-
ible model. Default is 2. The elements of this array should take values greater
than 0.5. The larger s is, the smoother we are assuming the truth to be.

r0 numerical array. Initial learning rate/step size, don’t set it too large. The step size
at each iteration will be r0*(sample size)^(-1/(2s+1)), which is slowly decaying.

J numerical array. Initial number of basis functions, a larger J corresponds to
a more flexible estimator The number of basis functions at each iteration will
be J*(sample size)^(1/(2s+1)), which is slowly increasing. We recommend use

8 sieve.sgd.preprocess

J that is at least the dimension of predictor, i.e. the column number of the X
matrix.

type a string. It specifies what kind of basis functions are used. The default is (aperi-
odic) cosine basis functions (’cosine’), which is enough for generic usage.

interaction_order

a number. It also controls the model complexity. 1 means fitting an additive
model, 2 means fitting a model allows, 3 means interaction terms between 3
dimensions of the feature, etc. The default is 3. For large sample size, lower di-
mension problems, try a larger value (but need to be smaller than the dimension
of original features); for smaller sample size and higher dimensional problems,
try set it to a smaller value (1 or 2).

omega the rate of dimension-reduction parameter. Default is 0.51, usually do not need
to change.

norm_feature a logical variable. Default is TRUE. It means sieve_preprocess will rescale the
each dimension of features to 0 and 1. Only set to FALSE when user already
manually rescale them between 0 and 1.

norm_para a matrix. It specifies how the features are normalized. For training data, use the
default value NULL.

lower_q lower quantile used in normalization. Default is 0.01 (1% quantile).

upper_q upper quantile used in normalization. Default is 0.99 (99% quantile).

Value

A list containing the necessary information for next step model fitting. Typically, the list is used as
the main input of sieve.sgd.solver.

s.size.sofar a number. Number of samples has been processed so far.

type a string. The type of basis funtion.

hyper.para.list

a list of hyperparameters.

index.matrix a matrix. Identifies the multivariate basis functions used in fitting.

index.row.prod the index product for each basis function. It is used in calculating basis function
- specific learning rates.

inf.list a list storing the fitted results. It has a length of "number of unique combinations
of the hyperparameters". The component of inf.list is itself a list, it has a hy-
per.para.index domain to specify its corresponding hyperparameters (need to be
used together with hyper.para.list). Its rolling.cv domain is the progressive val-
idation statistics for hyperparameter tuning; beta.f is the regression coefficients
for the first length(beta.f) basis functions, the rest of the basis have 0 coefficients.

norm_para a matrix. It records how each dimension of the feature/predictor is rescaled,
which is useful when rescaling the testing sample’s predictors.

sieve.sgd.solver 9

Examples

xdim <- 1 #1 dimensional feature
#generate 1000 training samples
TrainData <- GenSamples(s.size = 1000, xdim = xdim)
sieve.model <- sieve.sgd.preprocess(X = TrainData[,2:(xdim+1)])

sieve.sgd.solver Fit sieve-SGD estimators, using progressive validation for hyperpa-
rameter tuning.

Description

Fit sieve-SGD estimators, using progressive validation for hyperparameter tuning.

Usage

sieve.sgd.solver(sieve.model, X, Y, cv_weight_rate = 1)

Arguments

sieve.model a list initiated using sieve.sgd.preprocess. Check the documentation of sieve.sgd.preprocess
for more information.

X a data frame containing prediction features/ independent variables.
Y training outcome.
cv_weight_rate this governs the divergence rate of rolling validation statistics. Default is set to

be 1 and in general does not need to be changed.

Value

A list. It contains the fitted regression coefficients and progressive validation statistics for each
hyperparameter combination.

s.size.sofar a number. Number of samples has been processed so far.
type a string. The type of basis funtion.
hyper.para.list

a list of hyperparameters.
index.matrix a matrix. Identifies the multivariate basis functions used in fitting.
index.row.prod the index product for each basis function. It is used in calculating basis function

- specific learning rates.
inf.list a list storing the fitted results. It has a length of "number of unique combinations

of the hyperparameters". The component of inf.list is itself a list, it has a hy-
per.para.index domain to specify its corresponding hyperparameters (need to be
used together with hyper.para.list). Its rolling.cv domain is the progressive val-
idation statistics for hyperparameter tuning; beta.f is the regression coefficients
for the first length(beta.f) basis functions, the rest of the basis have 0 coefficients.

norm_para a matrix. It records how each dimension of the feature/predictor is rescaled,
which is useful when rescaling the testing sample’s predictors.

10 sieve_predict

Examples

frho.para <- xdim <- 1 ##predictor dimension
frho <- 'additive' ###truth is a sum of absolute functions
type <- 'cosine' ###use cosine functions as the basis functions
#generate training data
TrainData <- GenSamples(s.size = 1e3, xdim = xdim,

frho.para = frho.para,
frho = frho, noise.para = 0.1)

#preprocess the model
sieve.model <- sieve.sgd.preprocess(X = TrainData[,2:(xdim+1)],

type = type,
s = c(1,2),
r0 = c(0.5, 2, 4),
J = c(1, 4, 8))

##train the model
sieve.model <- sieve.sgd.solver(sieve.model = sieve.model,

X = TrainData[,2:(xdim+1)],
Y = TrainData[,1])

##sieve-SGD can do multiple passes over the data, just like other SGD methods.
##usually a second pass can still improve the prediction accuracy
##watch out overfitting when performing multiple passes!
sieve.model <- sieve.sgd.solver(sieve.model = sieve.model,

X = TrainData[,2:(xdim+1)],
Y = TrainData[,1])

sieve_predict Predict the outcome of interest for new samples

Description

Use the fitted sieve regression model from sieve_solver. It also returns the testing mean-squared
errors.

Usage

sieve_predict(model, testX, testY = NULL)

Arguments

model a list. Use the fitted model from sieve_solver.

testX a data frame. Dimension equals to test sample size x feature diemnsion. Should
be of a similar format as the training feature provided to sieve_preprocess.

testY a vector. The outcome of testing samples (if known). Default is NULL. For
regression problems, the algorithm also returns the testing mean-squared errors.

sieve_preprocess 11

Value

a list.

predictY a matrix. Dimension is test sample size (# of rows) x number of penalty hy-
perparameter lambda (# of columns). For regression problem, that is, when
family = "gaussian", each entry is the estimated conditional mean (or predictor
of outcome Y). For classification problems (family = "binomial"), each entry is
the predicted probability of having Y = 1 (which class is defined as "class 1"
depends on the training data labeling).

MSE For regression problem, when testY is provided, the algorithm also calculates
the mean-sqaured errors using testing data. Each entry of MSE correponds to one
value of penalization hyperparameter lambda

Examples

xdim <- 1 #1 dimensional feature
#generate 1000 training samples
TrainData <- GenSamples(s.size = 1000, xdim = xdim)
#use 50 cosine basis functions
type <- 'cosine'
basisN <- 50
sieve.model <- sieve_preprocess(X = TrainData[,2:(xdim+1)],

basisN = basisN, type = type)
sieve.fit<- sieve_solver(model = sieve.model, Y = TrainData$Y)
#generate 1000 testing samples
TestData <- GenSamples(s.size = 1000, xdim = xdim)
sieve.prediction <- sieve_predict(model = sieve.fit,

testX = TestData[,2:(xdim+1)],
testY = TestData$Y)

###if the outcome is binary,
###need to solve a nonparametric logistic regression problem
xdim <- 1
TrainData <- GenSamples(s.size = 1e3, xdim = xdim, y.type = 'binary', frho = 'nonlinear_binary')
sieve.model <- sieve_preprocess(X = TrainData[,2:(xdim+1)],

basisN = basisN, type = type)
sieve.fit<- sieve_solver(model = sieve.model, Y = TrainData$Y,

family = 'binomial')

###the predicted value is conditional probability (of taking class 1).
TrainData <- GenSamples(s.size = 1e3, xdim = xdim, y.type = 'binary', frho = 'nonlinear_binary')
sieve.prediction <- sieve_predict(model = sieve.fit,

testX = TestData[,2:(xdim+1)])

sieve_preprocess Preprocess the original data for sieve estimation.

Description

Generate the design matrix for the downstream lasso-type penalized model fitting.

12 sieve_preprocess

Usage

sieve_preprocess(
X,
basisN = NULL,
maxj = NULL,
type = "cosine",
interaction_order = 3,
index_matrix = NULL,
norm_feature = TRUE,
norm_para = NULL

)

Arguments

X a data frame containing original features. The (i,j)-th element is the j-th dimen-
sion of the i-th sample’s feature vector. So the number of rows equals to the
sample size and the number of columns equals to the feature dimension.

basisN number of sieve basis function. It is in general larger than the dimension of the
original feature. Default is 50*dimension of original feature. A larger value has
a smaller approximation error but it is harder to estimate. The computational
time/memory requirement should scale linearly to basisN.

maxj a number. the maximum index product of the basis function. A larger value
means more basisN. If basisN is already specified, do not need to provide value
for this argument.

type a string. It specifies what kind of basis functions are used. The default is (aperi-
odic) cosine basis functions, which is suitable for most purpose.

interaction_order

a number. It also controls the model complexity. 1 means fitting an additive
model, 2 means fitting a model allows, 3 means interaction terms between 3
dimensions of the feature, etc. The default is 3. For large sample size, lower di-
mension problems, try a larger value (but need to be smaller than the dimension
of original features); for smaller sample size and higher dimensional problems,
try set it to a smaller value (1 or 2).

index_matrix a matrix. provide a pre-generated index matrix. The default is NULL, meaning
sieve_preprocess will generate one for the user.

norm_feature a logical variable. Default is TRUE. It means sieve_preprocess will rescale the
each dimension of features to 0 and 1. Only set to FALSE when user already
manually rescale them between 0 and 1.

norm_para a matrix. It specifies how the features are normalized. For training data, use the
default value NULL.

Value

A list containing the necessary information for next step model fitting. Typically, the list is used as
the main input of Sieve::sieve_solver.

sieve_preprocess 13

Phi a matrix. This is the design matrix directly used by the next step model fitting.
The (i,j)-th element of this matrix is the evaluation of i-th sample’s feature at the
j-th basis function. The dimension of this matrix is sample size x basisN.

X a matrix. This is the rescaled original feature/predictor matrix.

type a string. The type of basis funtion.

index_matrix a matrix. It specifies what are the product basis functions used when construct-
ing the design matrix Phi. It has a dimension basisN x dimension of original
features. There are at most interaction_order many non-1 elements in each row.

basisN a number. Number of sieve basis functions.

norm_para a matrix. It records how each dimension of the feature/predictor is rescaled,
which is useful when rescaling the testing sample’s predictors.

Examples

xdim <- 1 #1 dimensional feature
#generate 1000 training samples
TrainData <- GenSamples(s.size = 1000, xdim = xdim)
#use 50 cosine basis functions
type <- 'cosine'
basisN <- 50
sieve.model <- sieve_preprocess(X = TrainData[,2:(xdim+1)],

basisN = basisN, type = type)
#sieve.model$Phi #Phi is the design matrix

xdim <- 5 #1 dimensional feature
#generate 1000 training samples
#only the first two dimensions are truly associated with the outcome
TrainData <- GenSamples(s.size = 1000, xdim = xdim,

frho = 'additive', frho.para = 2)

#use 1000 basis functions
#each of them is a product of univariate cosine functions.
type <- 'cosine'
basisN <- 1000
sieve.model <- sieve_preprocess(X = TrainData[,2:(xdim+1)],

basisN = basisN, type = type)
#sieve.model$Phi #Phi is the design matrix

#fit a nonaprametric additive model by setting interaction_order = 1
sieve.model <- sieve_preprocess(X = TrainData[,2:(xdim+1)],

basisN = basisN, type = type,
interaction_order = 1)

#sieve.model$index_matrix #for each row, there is at most one entry >= 2.
#this means there are no basis functions varying in more than 2-dimensions
#that is, we are fitting additive models without interaction between features.

14 sieve_solver

sieve_solver Calculate the coefficients for the basis functions

Description

This is the main function that performs sieve estimation. It calculate the coefficients by solving a
penalized lasso type problem.

Usage

sieve_solver(
model,
Y,
l1 = TRUE,
family = "gaussian",
lambda = NULL,
nlambda = 100

)

Arguments

model a list. Typically, it is the output of Sieve::sieve_preprocess.

Y a vector. The outcome variable. The length of Y equals to the training sample
size, which should also match the row number of X in model.

l1 a logical variable. TRUE means calculating the coefficients by sovling a l1-
penalized empirical risk minimization problem. FALSE means solving a least-
square problem. Default is TRUE.

family a string. ’gaussian’, mean-squared-error regression problem.

lambda same as the lambda of glmnet::glmnet.

nlambda a number. Number of penalization hyperparameter used when solving the lasso-
type problem. Default is 100.

Value

a list. In addition to the preprocessing information, it also has the fitted value.

Phi a matrix. This is the design matrix directly used by the next step model fitting.
The (i,j)-th element of this matrix is the evaluation of i-th sample’s feature at the
j-th basis function. The dimension of this matrix is sample size x basisN.

X a matrix. This is the rescaled original feature/predictor matrix.

beta_hat a matrix. Dimension is basisN x nlambda. The j-th column corresponds to the
fitted regression coeffcients using the j-th hyperparameter in lambda.

type a string. The type of basis funtion.

sieve_solver 15

index_matrix a matrix. It specifies what are the product basis functions used when construct-
ing the design matrix Phi. It has a dimension basisN x dimension of original
features. There are at most interaction_order many non-1 elements in each row.

basisN a number. Number of sieve basis functions.

norm_para a matrix. It records how each dimension of the feature/predictor is rescaled,
which is useful when rescaling the testing sample’s predictors.

lambda a vector. It records the penalization hyperparameter used when solving the lasso
problems. Default has a length of 100, meaning the algorithm tried 100 different
penalization hyperparameters.

family a string. ’gaussian’, continuous numerical outcome, regression probelm; ’bino-
mial’, binary outcome, classification problem.

Examples

xdim <- 1 #1 dimensional feature
#generate 1000 training samples
TrainData <- GenSamples(s.size = 1000, xdim = xdim)
#use 50 cosine basis functions
type <- 'cosine'
basisN <- 50
sieve.model <- sieve_preprocess(X = TrainData[,2:(xdim+1)],

basisN = basisN, type = type)
sieve.fit<- sieve_solver(model = sieve.model, Y = TrainData$Y)

###if the outcome is binary,
###need to solve a nonparametric logistic regression problem
xdim <- 1
TrainData <- GenSamples(s.size = 1e3, xdim = xdim, y.type = 'binary', frho = 'nonlinear_binary')
sieve.model <- sieve_preprocess(X = TrainData[,2:(xdim+1)],

basisN = basisN, type = type)
sieve.fit<- sieve_solver(model = sieve.model, Y = TrainData$Y,

family = 'binomial')

Index

∗ sieve estimation; estimation using
orthogonal series

Sieve-package, 2

clean_up_result, 4
create_index_matrix, 4

GenSamples, 5

Sieve (Sieve-package), 2
Sieve-package, 2
sieve.sgd.predict, 6
sieve.sgd.preprocess, 7
sieve.sgd.solver, 9
sieve_predict, 10
sieve_preprocess, 11
sieve_solver, 14

16

	Sieve-package
	clean_up_result
	create_index_matrix
	GenSamples
	sieve.sgd.predict
	sieve.sgd.preprocess
	sieve.sgd.solver
	sieve_predict
	sieve_preprocess
	sieve_solver
	Index

