Package: Rlgt 0.2-2
Rlgt: Bayesian Exponential Smoothing Models with Trend Modifications
An implementation of a number of Global Trend models for time series forecasting that are Bayesian generalizations and extensions of some Exponential Smoothing models. The main differences/additions include 1) nonlinear global trend, 2) Student-t error distribution, and 3) a function for the error size, so heteroscedasticity. The methods are particularly useful for short time series. When tested on the well-known M3 dataset, they are able to outperform all classical time series algorithms. The models are fitted with MCMC using the 'rstan' package.
Authors:
Rlgt_0.2-2.tar.gz
Rlgt_0.2-2.tar.gz(r-4.5-noble)Rlgt_0.2-2.tar.gz(r-4.4-noble)
Rlgt.pdf |Rlgt.html✨
Rlgt/json (API)
# Install 'Rlgt' in R: |
install.packages('Rlgt', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/cbergmeir/rlgt/issues
- iclaims.example - Weekly Initial Claims of US Unemployment Benefits & Google Trends Queries
- umcsent.example - University of Michigan Monthly Survey of Consumer Sentiment & Google Trends Queries
Last updated 4 months agofrom:edec75e6f7. Checks:OK: 1 NOTE: 1. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 15 2024 |
R-4.5-linux-x86_64 | NOTE | Oct 15 2024 |
Exports:blgt.multi.forecastinitModelrlgtrlgt.control
Dependencies:abindbackportsBHcallrcheckmateclicolorspacecurldescdistributionalfansifarverforecastfracdiffgenericsggplot2gluegridExtragtableinlineisobandjsonlitelabelinglatticelifecyclelmtestloomagrittrMASSMatrixMatrixModelsmatrixStatsmgcvmnormtmunsellnlmennetnumDerivpillarpkgbuildpkgconfigposteriorprocessxpsquadprogquantmodquantregQuickJSRR6RColorBrewerRcppRcppArmadilloRcppEigenRcppParallelrlangrstanrstantoolsscalessnSparseMStanHeaderssurvivaltensorAtibbletimeDatetruncnormtseriesTTRurcautf8vctrsviridisLitewithrxtszoo
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Getting started with the Rlgt package | Rlgt-package Rlgt |
Rlgt LSGT Gibbs run in parallel | blgt.multi.forecast |
Rlgt forecast | forecast.rlgtfit |
Weekly Initial Claims of US Unemployment Benefits & Google Trends Queries | iclaims.example |
Initialize a model from the Rlgt family | initModel |
rlgtfit posterior interval | posterior_interval.rlgtfit |
Generic print function for rlgtfit models | print.rlgtfit summary.rlgt |
Fit an Rlgt model | rlgt |
Sets and initializes the control parameters | rlgt.control |
rlgtfit class | rlgtfit |
University of Michigan Monthly Survey of Consumer Sentiment & Google Trends Queries | umcsent.example |