Package: Rlgt 0.2-2

Christoph Bergmeir

Rlgt: Bayesian Exponential Smoothing Models with Trend Modifications

An implementation of a number of Global Trend models for time series forecasting that are Bayesian generalizations and extensions of some Exponential Smoothing models. The main differences/additions include 1) nonlinear global trend, 2) Student-t error distribution, and 3) a function for the error size, so heteroscedasticity. The methods are particularly useful for short time series. When tested on the well-known M3 dataset, they are able to outperform all classical time series algorithms. The models are fitted with MCMC using the 'rstan' package.

Authors:Slawek Smyl [aut], Christoph Bergmeir [aut, cre], Erwin Wibowo [aut], To Wang Ng [aut], Xueying Long [aut], Alexander Dokumentov [aut], Daniel Schmidt [aut], Trustees of Columbia University [cph]

Rlgt_0.2-2.tar.gz
Rlgt_0.2-2.tar.gz(r-4.5-noble)Rlgt_0.2-2.tar.gz(r-4.4-noble)
Rlgt.pdf |Rlgt.html
Rlgt/json (API)

# Install 'Rlgt' in R:
install.packages('Rlgt', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/cbergmeir/rlgt/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:
  • iclaims.example - Weekly Initial Claims of US Unemployment Benefits & Google Trends Queries
  • umcsent.example - University of Michigan Monthly Survey of Consumer Sentiment & Google Trends Queries

2.79 score 31 scripts 279 downloads 4 exports 75 dependencies

Last updated 4 months agofrom:edec75e6f7. Checks:OK: 1 NOTE: 1. Indexed: no.

TargetResultDate
Doc / VignettesOKOct 15 2024
R-4.5-linux-x86_64NOTEOct 15 2024

Exports:blgt.multi.forecastinitModelrlgtrlgt.control

Dependencies:abindbackportsBHcallrcheckmateclicolorspacecurldescdistributionalfansifarverforecastfracdiffgenericsggplot2gluegridExtragtableinlineisobandjsonlitelabelinglatticelifecyclelmtestloomagrittrMASSMatrixMatrixModelsmatrixStatsmgcvmnormtmunsellnlmennetnumDerivpillarpkgbuildpkgconfigposteriorprocessxpsquadprogquantmodquantregQuickJSRR6RColorBrewerRcppRcppArmadilloRcppEigenRcppParallelrlangrstanrstantoolsscalessnSparseMStanHeaderssurvivaltensorAtibbletimeDatetruncnormtseriesTTRurcautf8vctrsviridisLitewithrxtszoo

Getting Started with Global Trend Models

Rendered fromgettingStarted.Rmdusingknitr::rmarkdownon Oct 15 2024.

Last update: 2022-05-17
Started: 2019-02-22

Global Trend Models - LGT, SGT, and S2GT

Rendered fromGT_models.Rmdusingknitr::rmarkdownon Oct 15 2024.

Last update: 2019-06-14
Started: 2019-02-22