Package: ReSurv 1.0.0

Emil Hofman

ReSurv: Machine Learning Models for Predicting Claim Counts

Prediction of claim counts using the feature based development factors introduced in the manuscript Hiabu M., Hofman E. and Pittarello G. (2023) <doi:10.48550/arXiv.2312.14549>. Implementation of Neural Networks, Extreme Gradient Boosting, and Cox model with splines to optimise the partial log-likelihood of proportional hazard models.

Authors:Emil Hofman [aut, cre, cph], Gabriele Pittarello [aut, cph], Munir Hiabu [aut, cph]

ReSurv_1.0.0.tar.gz
ReSurv_1.0.0.tar.gz(r-4.5-noble)ReSurv_1.0.0.tar.gz(r-4.4-noble)
ReSurv_1.0.0.tgz(r-4.4-emscripten)ReSurv_1.0.0.tgz(r-4.3-emscripten)
ReSurv.pdf |ReSurv.html
ReSurv/json (API)

# Install 'ReSurv' in R:
install.packages('ReSurv', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/edhofman/resurv/issues

3.72 score 21 scripts 7 exports 180 dependencies

Last updated 7 days agofrom:cb758a59eb. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKNov 15 2024
R-4.5-linuxOKNov 15 2024

Exports:data_generatorIndividualDataPPinstall_pyresurvooslkhReSurvReSurvCVsurvival_crps

Dependencies:abindaskpassbackportsbase64encBBmiscbitbit64blobbootbroombshazardbslibcachemcallrcarcarDatacellrangercheckmateclicliprcmprskcolorspacecolourpickercommonmarkconflictedcorrplotcowplotcpp11crayoncurldata.tableDBIdbplyrDerivdigestdoBydplyrdtplyrEpietmevaluatefansifarverfastDummiesfastmapfontawesomeforcatsforecastFormulafracdifffsgarglegenericsggExtraggforceggplot2ggpubrggrepelggsciggsignifgluegoogledrivegooglesheets4gridExtragtablehavenherehighrhmshtmltoolshtmlwidgetshttpuvhttridsisobandjquerylibjsonliteknitrlabelinglaterlatticelifecyclelme4lmtestlubridatemagrittrMASSMatrixMatrixModelsmemoisemgcvmicrobenchmarkmimeminiUIminqamodelrmunsellnlmenloptrnnetnumDerivopensslpbkrtestpillarpkgconfigplyrpngpolyclippolynomprettyunitsprocessxprogresspromisespspurrrquadprogquantmodquantregR6raggrappdirsRColorBrewerRcppRcppArmadilloRcppEigenRcppTOMLreadrreadxlrematchrematch2reprexreshape2reticulaterlangrmarkdownrpartrprojrootrstatixrstudioapirvestsassscalesselectrSHAPforxgboostshinyshinyjssourcetoolsSparseMstringistringrsurvivalSynthETICsyssystemfontstextshapingtibbletidyrtidyselecttidyversetimechangetimeDatetinytextseriesTTRtweenrtzdburcautf8uuidvctrsviridisLitevroomwithrxfunxgboostxml2xtablextsyamlzoo

A Machine Learning Approach Based On Survival Analysis For IBNR Frequencies In Non-Life Reserving

Rendered fromManuscript_replication_material.Rmdusingknitr::rmarkdownon Nov 15 2024.

Last update: 2024-11-14
Started: 2024-11-14

Claim Counts Prediction Using Individual Data

Rendered fromcas_call.Rmdusingknitr::rmarkdownon Nov 15 2024.

Last update: 2024-11-14
Started: 2024-11-14

Exploring The Variables Importance

Rendered fromvariables_importance.Rmdusingknitr::rmarkdownon Nov 15 2024.

Last update: 2024-11-14
Started: 2024-11-14

Hyperparameters Tuning

Rendered fromhp_tuning.Rmdusingknitr::rmarkdownon Nov 15 2024.

Last update: 2024-11-14
Started: 2024-11-14

Simulate Individual Data

Rendered fromsimulate_individual_data.Rmdusingknitr::rmarkdownon Nov 15 2024.

Last update: 2024-11-14
Started: 2024-11-14