Package: ReSurv 1.0.0
ReSurv: Machine Learning Models for Predicting Claim Counts
Prediction of claim counts using the feature based development factors introduced in the manuscript Hiabu M., Hofman E. and Pittarello G. (2023) <doi:10.48550/arXiv.2312.14549>. Implementation of Neural Networks, Extreme Gradient Boosting, and Cox model with splines to optimise the partial log-likelihood of proportional hazard models.
Authors:
ReSurv_1.0.0.tar.gz
ReSurv_1.0.0.tar.gz(r-4.5-noble)ReSurv_1.0.0.tar.gz(r-4.4-noble)
ReSurv_1.0.0.tgz(r-4.4-emscripten)ReSurv_1.0.0.tgz(r-4.3-emscripten)
ReSurv.pdf |ReSurv.html✨
ReSurv/json (API)
# Install 'ReSurv' in R: |
install.packages('ReSurv', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/edhofman/resurv/issues
Last updated 7 days agofrom:cb758a59eb. Checks:OK: 2. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 15 2024 |
R-4.5-linux | OK | Nov 15 2024 |
Exports:data_generatorIndividualDataPPinstall_pyresurvooslkhReSurvReSurvCVsurvival_crps
Dependencies:abindaskpassbackportsbase64encBBmiscbitbit64blobbootbroombshazardbslibcachemcallrcarcarDatacellrangercheckmateclicliprcmprskcolorspacecolourpickercommonmarkconflictedcorrplotcowplotcpp11crayoncurldata.tableDBIdbplyrDerivdigestdoBydplyrdtplyrEpietmevaluatefansifarverfastDummiesfastmapfontawesomeforcatsforecastFormulafracdifffsgarglegenericsggExtraggforceggplot2ggpubrggrepelggsciggsignifgluegoogledrivegooglesheets4gridExtragtablehavenherehighrhmshtmltoolshtmlwidgetshttpuvhttridsisobandjquerylibjsonliteknitrlabelinglaterlatticelifecyclelme4lmtestlubridatemagrittrMASSMatrixMatrixModelsmemoisemgcvmicrobenchmarkmimeminiUIminqamodelrmunsellnlmenloptrnnetnumDerivopensslpbkrtestpillarpkgconfigplyrpngpolyclippolynomprettyunitsprocessxprogresspromisespspurrrquadprogquantmodquantregR6raggrappdirsRColorBrewerRcppRcppArmadilloRcppEigenRcppTOMLreadrreadxlrematchrematch2reprexreshape2reticulaterlangrmarkdownrpartrprojrootrstatixrstudioapirvestsassscalesselectrSHAPforxgboostshinyshinyjssourcetoolsSparseMstringistringrsurvivalSynthETICsyssystemfontstextshapingtibbletidyrtidyselecttidyversetimechangetimeDatetinytextseriesTTRtweenrtzdburcautf8uuidvctrsviridisLitevroomwithrxfunxgboostxml2xtablextsyamlzoo
A Machine Learning Approach Based On Survival Analysis For IBNR Frequencies In Non-Life Reserving
Rendered fromManuscript_replication_material.Rmd
usingknitr::rmarkdown
on Nov 15 2024.Last update: 2024-11-14
Started: 2024-11-14
Claim Counts Prediction Using Individual Data
Rendered fromcas_call.Rmd
usingknitr::rmarkdown
on Nov 15 2024.Last update: 2024-11-14
Started: 2024-11-14
Exploring The Variables Importance
Rendered fromvariables_importance.Rmd
usingknitr::rmarkdown
on Nov 15 2024.Last update: 2024-11-14
Started: 2024-11-14
Hyperparameters Tuning
Rendered fromhp_tuning.Rmd
usingknitr::rmarkdown
on Nov 15 2024.Last update: 2024-11-14
Started: 2024-11-14
Simulate Individual Data
Rendered fromsimulate_individual_data.Rmd
usingknitr::rmarkdown
on Nov 15 2024.Last update: 2024-11-14
Started: 2024-11-14