# -------------------------------------------- # CITATION file created with {cffr} R package # See also: https://docs.ropensci.org/cffr/ # -------------------------------------------- cff-version: 1.2.0 message: 'To cite package "ReSurv" in publications use:' type: software license: GPL-2.0-or-later title: 'ReSurv: Machine Learning Models for Predicting Claim Counts' version: 1.0.0 doi: 10.32614/CRAN.package.ReSurv abstract: Prediction of claim counts using the feature based development factors introduced in the manuscript Hiabu M., Hofman E. and Pittarello G. (2023) . Implementation of Neural Networks, Extreme Gradient Boosting, and Cox model with splines to optimise the partial log-likelihood of proportional hazard models. authors: - family-names: Hofman given-names: Emil email: emil_hofman@hotmail.dk - family-names: Pittarello given-names: Gabriele email: gabriele.pittarello@uniroma1.it orcid: https://orcid.org/0000-0003-3360-5826 - family-names: Hiabu given-names: Munir email: mh@math.ku.dk orcid: https://orcid.org/0000-0001-5846-667X repository: https://CRAN.R-project.org/package=ReSurv repository-code: https://github.com/edhofman/ReSurv url: https://github.com/edhofman/ReSurv date-released: '2024-11-14' contact: - family-names: Hofman given-names: Emil email: emil_hofman@hotmail.dk