Package: Rcurvep 1.3.1

Jui-Hua Hsieh

Rcurvep: Concentration-Response Data Analysis using Curvep

An R interface for processing concentration-response datasets using Curvep, a response noise filtering algorithm. The algorithm was described in the publications (Sedykh A et al. (2011) <doi:10.1289/ehp.1002476> and Sedykh A (2016) <doi:10.1007/978-1-4939-6346-1_14>). Other parametric fitting approaches (e.g., Hill equation) are also adopted for ease of comparison. 3-parameter Hill equation from 'tcpl' package (Filer D et al., <doi:10.1093/bioinformatics/btw680>) and 4-parameter Hill equation from Curve Class2 approach (Wang Y et al., <doi:10.2174/1875397301004010057>) are available. Also, methods for calculating the confidence interval around the activity metrics are also provided. The methods are based on the bootstrap approach to simulate the datasets (Hsieh J-H et al. <doi:10.1093/toxsci/kfy258>). The simulated datasets can be used to derive the baseline noise threshold in an assay endpoint. This threshold is critical in the toxicological studies to derive the point-of-departure (POD).

Authors:Jui-Hua Hsieh [aut, cre], Alexander Sedykh [aut], Fred Parham [ctb], Yuhong Wang [ctb], Tongan Zhao [aut], Ruili Huang [ctb]

Rcurvep_1.3.1.tar.gz
Rcurvep_1.3.1.tar.gz(r-4.5-noble)Rcurvep_1.3.1.tar.gz(r-4.4-noble)
Rcurvep_1.3.1.tgz(r-4.4-emscripten)Rcurvep_1.3.1.tgz(r-4.3-emscripten)
Rcurvep.pdf |Rcurvep.html
Rcurvep/json (API)
NEWS

# Install 'Rcurvep' in R:
install.packages('Rcurvep', repos = 'https://cloud.r-project.org')

Bug tracker:https://github.com/moggces/rcurvep/issues2 issues

Uses libs:
  • openjdk– OpenJDK Java runtime, using Hotspot JIT
Datasets:
  • zfishbeh - Subsets of concentration response datasets from zebrafish neurotoxicity assays
  • zfishdev - Subsets of concentration response datasets from zebrafish developmental toxicity assays
  • zfishdev_act - Activity output based on simulated datasets using zfishdev_all dataset
  • zfishdev_all - Full sets of concentration response datasets from zebrafish developmental toxicity assays

On CRAN:

Conda:

openjdk

3.00 score 207 downloads 1 mentions 14 exports 47 dependencies

Last updated 1 years agofrom:a0a26c319a. Checks:3 OK. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKMar 05 2025
R-4.5-linuxOKMar 05 2025
R-4.4-linuxOKMar 05 2025

Exports:cal_knee_pointcombi_run_rcurvepcreate_datasetcurvepcurvep_defaultsestimate_dataset_bmrfit_cc2_modlfit_modlsget_hill_fit_configmerge_rcurvep_objsrun_fitrun_rcurvepsummarize_fit_outputsummarize_rcurvep_output

Dependencies:bootclicodetoolscolorspacecpp11digestdplyrfansifarverfurrrfuturegenericsggplot2globalsgluegtableisobandlabelinglatticelifecyclelistenvmagrittrMASSMatrixmgcvmunsellnlmeparallellypillarpkgconfigpurrrR6rbibutilsRColorBrewerRdpackrJavarlangscalesstringistringrtibbletidyrtidyselectutf8vctrsviridisLitewithr

Parallel Computing Examples Using Rcurvep

Rendered fromfuture_rcurvep.Rmdusingknitr::rmarkdownon Mar 05 2025.

Last update: 2024-01-10
Started: 2024-01-10

Practical applications using Rcurvep package

Rendered frompractical_rcurvep.Rmdusingknitr::rmarkdownon Mar 05 2025.

Last update: 2024-01-10
Started: 2021-01-07

Citation

To cite package ‘Rcurvep’ in publications use:

Hsieh J, Sedykh A, Zhao T (2024). Rcurvep: Concentration-Response Data Analysis using Curvep. R package version 1.3.1, https://CRAN.R-project.org/package=Rcurvep.

Corresponding BibTeX entry:

  @Manual{,
    title = {Rcurvep: Concentration-Response Data Analysis using
      Curvep},
    author = {Jui-Hua Hsieh and Alexander Sedykh and Tongan Zhao},
    year = {2024},
    note = {R package version 1.3.1},
    url = {https://CRAN.R-project.org/package=Rcurvep},
  }

Readme and manuals

Overview

The package provides an R interface for processing concentration-response datasets using Curvep, a response noise filtering algorithm. The algorithm was described in the publications (Sedykh A et al. (2011) doi:10.1289/ehp.1002476 and Sedykh A (2016) doi:10.1007/978-1-4939-6346-1_14).

Other parametric fitting approaches (e.g., Hill equation) are also adopted for ease of comparison. 3-parameter Hill equation from original tcpl package (Filer DL et al., doi:10.1093/bioinformatics/btw680) and 4-parameter Hill equation from Curve Class2 approach (Wang Y et al., doi:10.2174/1875397301004010057) are available.

Also, methods for calculating the confidence interval around the activity metrics are also provided. The methods are based on the bootstrap approach to simulate the datasets (Hsieh J-H et al. doi:10.1093/toxsci/kfy258). The simulated datasets can be used to derive the baseline noise threshold in an assay endpoint. This threshold is critical in the toxicological studies to derive the point-of-departure (POD).

Installation

# the development version from GitHub:
# install.packages("devtools")
devtools::install_github("moggces/Rcurvep")
devtools::install_github("moggces/Rcurvep", dependencies = TRUE, build_vignettes = TRUE)

Package structure

Usage

Run analysis
library(Rcurvep)
data("zfishbeh")
out_curvep <- combi_run_rcurvep(zfishbeh, TRSH = 30)  # using Curvep with BMR = 30
out_fit1 <- run_fit(zfishbeh, modls = "cc2") # using Curve Class2 4-parameter hill
out_fit2 <- run_fit(zfishbeh, modls = c("cnst", "hill")) # using tcpl 3-parameter hill + constant model
Find BMR
data("zfishdev_act")
out_bmr <- estimate_dataset_bmr(zfishdev_act)
## $`1`

More Usage

To learn more about Rcurvep, start with the vignettes: browseVignettes(package = "Rcurvep")

Help Manual

Help pageTopics
Calculate the knee point on the exponential-like curvecal_knee_point
Run Curvep on datasets of concentration-response data with a combination of Curvep parameterscombi_run_rcurvep
Create concentration-response datasets that can be applied in the 'run_rcurvep()'create_dataset
The Curvep function to process one set of concentration-response datacurvep
Default parameters of Curvepcurvep_defaults
Estimate benchmark response (BMR) for each datasetestimate_dataset_bmr
Fit concentration-response data using Curve Class2 approachfit_cc2_modl
Fit one set of concentration-response data using types of modelsfit_modls
Get the default configurations for the Hill fitget_hill_fit_config
Merge results from multiple rcurvep objectsmerge_rcurvep_objs
Plot BMR diagnostic curvesplot.rcurvep_bmr
Run parametric fits using types of models on concentration-response datasetsrun_fit
Run Curvep on datasets of concentration-response datarun_rcurvep
Summarize the results from the parametric fitting using types of modelssummarize_fit_output
Clean and summarize the output of rcurvep objectsummarize_rcurvep_output
Subsets of concentration response datasets from zebrafish neurotoxicity assayszfishbeh
Subsets of concentration response datasets from zebrafish developmental toxicity assayszfishdev
Activity output based on simulated datasets using zfishdev_all datasetzfishdev_act
Full sets of concentration response datasets from zebrafish developmental toxicity assayszfishdev_all