Package: QuantRegGLasso 1.0.0
QuantRegGLasso: Adaptively Weighted Group Lasso for Semiparametric Quantile Regression Models
Implements an adaptively weighted group Lasso procedure for simultaneous variable selection and structure identification in varying coefficient quantile regression models and additive quantile regression models with ultra-high dimensional covariates. The methodology, grounded in a strong sparsity condition, establishes selection consistency under certain weight conditions. To address the challenge of tuning parameter selection in practice, a BIC-type criterion named high-dimensional information criterion (HDIC) is proposed. The Lasso procedure, guided by HDIC-determined tuning parameters, maintains selection consistency. Theoretical findings are strongly supported by simulation studies. (Toshio Honda, Ching-Kang Ing, Wei-Ying Wu, 2019, <doi:10.3150/18-BEJ1091>).
Authors:
QuantRegGLasso_1.0.0.tar.gz
QuantRegGLasso_1.0.0.tar.gz(r-4.5-noble)QuantRegGLasso_1.0.0.tar.gz(r-4.4-noble)
QuantRegGLasso_1.0.0.tgz(r-4.4-emscripten)QuantRegGLasso_1.0.0.tgz(r-4.3-emscripten)
QuantRegGLasso.pdf |QuantRegGLasso.html✨
QuantRegGLasso/json (API)
NEWS
# Install 'QuantRegGLasso' in R: |
install.packages('QuantRegGLasso', repos = 'https://cloud.r-project.org') |
Bug tracker:https://github.com/egpivo/quantregglasso/issues
Last updated 1 years agofrom:09a3e439dd. Checks:2 OK. Indexed: no.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Feb 10 2025 |
R-4.5-linux-x86_64 | OK | Feb 10 2025 |
Exports:awglawgl_omegacheck_predict_parametersorthogonize_bsplineplot_bic_resultplot_coefficient_functionplot_sequentiallyplot.qrglassoplot.qrglasso.predictpredictqrglasso
Dependencies:clicolorspacefansifarverggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigR6RColorBrewerRcppRcppArmadillorlangscalestibbleutf8vctrsviridisLitewithr
Citation
To cite package ‘QuantRegGLasso’ in publications use:
Wang W, Wu W, Honda T, Ing C (2024). QuantRegGLasso: Adaptively Weighted Group Lasso for Semiparametric Quantile Regression Models. R package version 1.0.0, https://CRAN.R-project.org/package=QuantRegGLasso.
Corresponding BibTeX entry:
@Manual{, title = {QuantRegGLasso: Adaptively Weighted Group Lasso for Semiparametric Quantile Regression Models}, author = {Wen-Ting Wang and Wei-Ying Wu and Toshio Honda and Ching-Kang Ing}, year = {2024}, note = {R package version 1.0.0}, url = {https://CRAN.R-project.org/package=QuantRegGLasso}, }
Readme and manuals
QuantRegGLasso: Adaptively Weighted Group Lasso for Semiparametric Quantile Regression Models
QuantRegGLasso is an R package designed for adaptively weighted group Lasso procedures in quantile regression. It excels in simultaneous variable selection and structure identification for varying coefficient quantile regression models and additive quantile regression models with ultra-high dimensional covariates.
Installation
- Install the current development version from GitHub:
remotes::install_github("egpivo/QuantRegGLasso")
Please Note:
-
Windows Users: Ensure that you have Rtools installed before proceeding with the installation.
-
Mac Users: You need Xcode Command Line Tools and should install the library
gfortran
. Follow these steps in the terminal:brew update brew install gcc
For a detailed solution, refer to this link, or download and install the library
gfortran
to resolve the "ld: library not found for -lgfortran
" error.
Authors
Maintainer
Reference
Toshio Honda, Ching-Kang Ing, Wei-Ying Wu (2019). Adaptively weighted group Lasso for semiparametric quantile regression models.
This paper introduces the adaptively weighted group Lasso procedure and its application to semiparametric quantile regression models. The methodology is grounded in a strong sparsity condition, establishing selection consistency under certain weight conditions.
License
GPL (>= 2)
Help Manual
Help page | Topics |
---|---|
Orthogonalized B-splines | orthogonize_bspline |
Display BIC Results from 'qrglasso' | plot.qrglasso |
Display Predicted Coefficient Functions from 'qrglasso' | plot.qrglasso.predict |
Predict Top-k Coefficient Functions | predict |
Adaptively Weighted Group Lasso | qrglasso |