Package 'QuantRegGLasso'

Title: Adaptively Weighted Group Lasso for Semiparametric Quantile Regression Models
Description: Implements an adaptively weighted group Lasso procedure for simultaneous variable selection and structure identification in varying coefficient quantile regression models and additive quantile regression models with ultra-high dimensional covariates. The methodology, grounded in a strong sparsity condition, establishes selection consistency under certain weight conditions. To address the challenge of tuning parameter selection in practice, a BIC-type criterion named high-dimensional information criterion (HDIC) is proposed. The Lasso procedure, guided by HDIC-determined tuning parameters, maintains selection consistency. Theoretical findings are strongly supported by simulation studies. (Toshio Honda, Ching-Kang Ing, Wei-Ying Wu, 2019, <DOI:10.3150/18-BEJ1091>).
Authors: Wen-Ting Wang [aut, cre] , Wei-Ying Wu [aut], Toshio Honda [aut], Ching-Kang Ing [aut]
Maintainer: Wen-Ting Wang <[email protected]>
License: GPL (>= 2)
Version: 1.0.0
Built: 2024-12-12 06:51:11 UTC
Source: CRAN

Help Index


Orthogonalized B-splines

Description

Generate a set of orthogonalized B-splines using the Gram-Schmidt algorithm applied to the built-in function splines::bs().

Usage

orthogonize_bspline(
  knots,
  boundary_knots,
  degree,
  predictors = NULL,
  is_approx = FALSE
)

Arguments

knots

Array. The knots that define the spline.

boundary_knots

Array. The breakpoints that define the spline.

degree

Integer. The degree of the piecewise polynomial.

predictors

Array. The predictor variables with size p.

is_approx

Boolean. The default is FALSE.

Value

A list containing:

bsplines

Matrix of orthogonalized B-splines with dimensions (p,length(knots)+degree+1)(p, \text{length}(knots) + \text{degree} + 1)

z

Predictors used in generation

Examples

# Example: Generate and plot the first 5 orthogonalized B-splines
p <- 30
total_knots <- 10
degree <- 3
boundaries <- c(0, 1)
x <- seq(from = 0, to = 1, length.out = total_knots)
knots <- x[2:(total_knots - 1)]
predictors <- runif(p, min = 0, max = 1)
bsplines <- orthogonize_bspline(knots, boundaries, degree, predictors)

# Plot the first 5 B-splines
index <- order(bsplines$z)
original_par <- par(no.readonly = TRUE)
par(mfrow = c(1, 5))
for (i in 1:5)
  plot(bsplines$z[index], bsplines$bsplines[index, i], main = i, type = "l")
par(original_par)

Display BIC Results from qrglasso

Description

Visualize the HDIC BIC results corresponding to hyperparameters obtained from qrglasso.

Usage

## S3 method for class 'qrglasso'
plot(x, ...)

Arguments

x

An object of class qrglasso for the plot method.

...

Additional parameters not used directly.

Value

NULL

See Also

qrglasso

Examples

set.seed(123)
n <- 100
p <- 5
L <- 5
Y <- matrix(rnorm(n), n, 1)
W <- matrix(rnorm(n * p * (L - 1)), n, p * (L - 1))

# Call qrglasso with default parameters
result <- qrglasso(Y = Y, W = W, p = p)

# Visualize the BIC results
plot(result)

Display Predicted Coefficient Functions from qrglasso

Description

Visualize the predicted coefficient functions selected by BIC.

Usage

## S3 method for class 'qrglasso.predict'
plot(x, ...)

Arguments

x

An object of class qrglasso.predict for the plot method.

...

Additional parameters not used directly.

Value

NULL

See Also

qrglasso

Examples

set.seed(123)
n <- 100
p <- 5
L <- 5
Y <- matrix(rnorm(n), n, 1)
W <- matrix(rnorm(n * p * (L - 1)), n, p * (L - 1))

# Call qrglasso with default parameters
result <- qrglasso(Y = Y, W = W, p = p)

# Predict the top-k coefficient functions
estimate <- predict(result, top_k = 2)

# Display the predicted coefficient functions
plot(estimate)

Predict Top-k Coefficient Functions

Description

Predict the top-k coefficient functions based on a qrglasso class object.

Usage

predict(
  qrglasso_object,
  metric_type = "BIC",
  top_k = 5,
  degree = 2,
  boundaries = c(0, 1),
  is_approx = FALSE
)

Arguments

qrglasso_object

A qrglasso class object.

metric_type

Character. Metric type for gamma selection, e.g., BIC, BIC-log. Default is BIC.

top_k

Integer. The number of top estimated functions to predict. Default is 5.

degree

Integer. Degree of the piecewise polynomial. Default is 2.

boundaries

Array. Two boundary points for the piecewise polynomial. Default is c(0, 1).

is_approx

Logical. If TRUE, the size of covariate indexes will be 1e6; otherwise, 1e4. Default is FALSE.

Value

A list containing:

coef_functions

Matrix. The estimated top-k coefficient functions with dimension (m×km \times k), where mm is the size of z.

z

Array. Index predictors used in the generation.

See Also

qrglasso

Examples

set.seed(123)
n <- 100
p <- 5
L <- 5
Y <- matrix(rnorm(n), n, 1)
W <- matrix(rnorm(n * p * (L - 1)), n, p * (L - 1))

# Call qrglasso with default parameters
result <- qrglasso(Y = Y, W = W, p = p)
estimate <- predict(result) 
print(dim(estimate$coef_functions))

Adaptively Weighted Group Lasso

Description

The function qrglasso performs Adaptively Weighted Group Lasso for semiparametric quantile regression models. It estimates the coefficients of a quantile regression model with adaptively weighted group lasso regularization. The algorithm supports the use of B-spline basis functions to model the relationship between covariates and the response variable. Regularization is applied across different groups of covariates, and an adaptive weighting scheme is employed to enhance variable selection.

Usage

qrglasso(
  Y,
  W,
  p,
  omega = NULL,
  tau = 0.5,
  qn = 1,
  lambda = NULL,
  maxit = 1000,
  thr = 1e-04
)

Arguments

Y

A n×1n \times 1 data matrix where nn is the sample size.

W

A n×(p×L)n \times (p \times L) B-spline matrix where LL is the number of groups and pp is the number of covariates.

p

A numeric indicating the number of covariates.

omega

A p×1p \times 1 weight matrix. Default value is NULL.

tau

A numeric quantile of interest. Default value is 0.5.

qn

A numeric bound parameter for HDIC. Default value is 1.

lambda

A sequence of tuning parameters. Default value is NULL.

maxit

The maximum number of iterations. Default value is 1000.

thr

Threshold for convergence. Default value is 10410^{-4}.

Value

A list with the following components:

gamma

A target estimate.

xi

An auxiliary estimate in the ADMM algorithm.

phi

An auxiliary estimate in the ADMM algorithm.

BIC

A sequence of BIC values with respect to different lambdas.

lambda

A sequence of tuning parameters used in the algorithm.

L

The number of groups.

omega

A p×1p \times 1 weight matrix used in the algorithm.

Author(s)

Wen-Ting Wang

References

Toshio Honda, Ching-Kang Ing, Wei-Ying Wu (2019). Adaptively weighted group Lasso for semiparametric quantile regression models. Bernoulli 225 4B.

Examples

# Example: One true non-linear covariate function
# Define the function g1
g1 <- function(x) { 
  (3 * sin(2 * pi * x) / (2 - sin(2 * pi * x))) - 0.4641016 
}

# Set parameters
n <- 100
p <- 50
err_sd <- 0.1 ** 2
tau <- 0.7

# Generate synthetic data
set.seed(1234)
x <- matrix(runif(n * p, min = 0, max = 1), n, p)
error_tau <- rnorm(n, sd = err_sd) - qnorm(tau, sd = err_sd)
y <- g1(x[, 1]) + error_tau
y <- y - mean(y)

# B-spline parameters
total_knots <- 5
degree <- 2
boundaries <- c(0, 1)
xx <- seq(from = 0, to = 1, length.out = total_knots)
knots <- xx[2:(total_knots - 1)]

# Create B-spline matrix W
L <- total_knots + degree - 1
bspline_results <- lapply(1:n, function(i) orthogonize_bspline(knots, boundaries, degree, x[i, ]))
W <- matrix(
   t(sapply(bspline_results, function(result) sqrt(L) * result$bsplines[, -1])), 
   ncol = p * (L - 1),
   byrow = TRUE
)

# Perform quantile regression with group Lasso
n_lambda <- 10
max_lambda <- 10
lambda <- c(0, exp(seq(log(max_lambda / 1e4), log(max_lambda), length = (n_lambda - 1))))
result <- qrglasso(as.matrix(y), W, p)
# BIC Results
plot(result)
# Prediction
estimate = predict(result, top_k = 1)
plot(estimate)