Package: JLPM 1.0.2
JLPM: Joint Latent Process Models
Estimation of extended joint models with shared random effects. Longitudinal data are handled in latent process models for continuous (Gaussian or curvilinear) and ordinal outcomes while proportional hazard models are used for the survival part. We propose a frequentist approach using maximum likelihood estimation. See Saulnier et al, 2022 <doi:10.1016/j.ymeth.2022.03.003>.
Authors:
JLPM_1.0.2.tar.gz
JLPM_1.0.2.tar.gz(r-4.5-noble)JLPM_1.0.2.tar.gz(r-4.4-noble)
JLPM_1.0.2.tgz(r-4.4-emscripten)JLPM_1.0.2.tgz(r-4.3-emscripten)
JLPM.pdf |JLPM.html✨
JLPM/json (API)
# Install 'JLPM' in R: |
install.packages('JLPM', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/vivianephilipps/jlpm/issues
Last updated 1 years agofrom:7743608648. Checks:OK: 1 NOTE: 1. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 30 2024 |
R-4.5-linux-x86_64 | NOTE | Oct 30 2024 |
Exports:jointLPM
Dependencies:clicodetoolsdoParallelforeachglueiteratorslatticelcmmlifecyclemagrittrmarqLevAlgMatrixmvtnormnlmenumDerivrandtoolboxrlangrngWELLstringistringrsurvivalvctrs
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Estimation of joint latent process models | JLPM-package |
Conversion | convert |
Estimation of latent process joint models for multivariate longitudinal outcomes and time-to-event data. | jointLPM |
Brief summary of a joint latent process model | print.jointLPM |
Standard methods for estimated models | coef.jointLPM StandardMethods vcov.jointLPM |
Summary of a joint latent process model | summary.jointLPM |