Package: GofCens 1.2.1

Klaus Langohr

GofCens: Goodness-of-Fit Methods for Complete and Right-Censored Data

Graphical tools and goodness-of-fit tests for complete and right-censored data: 1. Kolmogorov-Smirnov, Cramér-von Mises, and Anderson-Darling tests, which utilize the empirical distribution function for complete data and are extended to handle right-censored data. 2. Generalized chi-squared-type test, which is based on the squared differences between observed and expected counts using random cells with right-censored data. 3. Graphical tools, such as probability and cumulative hazard plots, to help guide decisions about the most appropriate parametric model for the data.

Authors:Klaus Langohr [aut, cre], Mireia Besalú [aut], Matilde Francisco [aut], Arnau Garcia [aut], Guadalupe Gómez [aut]

GofCens_1.2.1.tar.gz
GofCens_1.2.1.tar.gz(r-4.5-noble)GofCens_1.2.1.tar.gz(r-4.4-noble)
GofCens_1.2.1.tgz(r-4.4-emscripten)GofCens_1.2.1.tgz(r-4.3-emscripten)
GofCens.pdf |GofCens.html
GofCens/json (API)

# Install 'GofCens' in R:
install.packages('GofCens', repos = 'https://cloud.r-project.org')

Bug tracker:https://github.com/arnaugarciagrbio/gofcens/issues0 issues

Pkgdown site:https://arnaugarciagrbio.github.io

Datasets:
  • nba - Survival times of former NBA players.

On CRAN:

Conda:

3.48 score 772 downloads 8 exports 34 dependencies

Last updated 5 months agofrom:3c1fb88fbc. Checks:3 OK. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKMar 11 2025
R-4.5-linuxOKMar 11 2025
R-4.4-linuxOKMar 11 2025

Exports:ADcenschisqcenscumhazPlotCvMcensgofcenskmPlotKScensprobPlot

Dependencies:actuarbootclicolorspaceexpintfansifarverfitdistrplusggplot2gluegridExtragtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigR6RColorBrewerrlangscalessurvivaltibbleutf8vctrsviridisLitewithr

Goodness of fit Tests

Rendered fromGoodness_of_fit_Tests.Rmdusingknitr::rmarkdownon Mar 11 2025.

Last update: 2024-10-25
Started: 2024-10-25

Citation

To cite package ‘GofCens’ in publications use:

Langohr K, Besalú M, Francisco M, Garcia A, Gómez G (2024). GofCens: Goodness-of-Fit Methods for Complete and Right-Censored Data. R package version 1.2.1, https://CRAN.R-project.org/package=GofCens.

Corresponding BibTeX entry:

  @Manual{,
    title = {GofCens: Goodness-of-Fit Methods for Complete and
      Right-Censored Data},
    author = {Klaus Langohr and Mireia Besalú and Matilde Francisco and
      Arnau Garcia and Guadalupe Gómez},
    year = {2024},
    note = {R package version 1.2.1},
    url = {https://CRAN.R-project.org/package=GofCens},
  }

Readme and manuals

GofCens: Goodness-of-Fit Methods for Complete and Right-Censored Data

The GofCens package include the following graphical tools and goodness-of-fit tests for complete and right-censored data:

  • Kolmogorov-Smirnov, Cramér-von Mises, and Anderson-Darling tests, which use the empirical distribution function for complete data and are extended for right-censored data.
  • Generalized chi-squared-type test, which is based on the squared differences between observed and expected counts using random cells with right-censored data.
  • A series of graphical tools such as probability or cumulative hazard plots to guide the decision about the most suitable parametric model for the data.

Installation

GofCens can be installed from CRAN:

install.packages("GofCens")

Brief Example

To conduct goodness-of-fit tests with right censored data we can use the KScens(), CvMcens(), ADcens() and chisqcens() functions. We illustrate this by means of the colon dataset:

# Kolmogorov-Smirnov
set.seed(123)
KScens(Surv(time, status) ~ 1, colon, distr = "norm")

# Cramér-von Mises
colonsamp <- colon[sample(nrow(colon), 300), ]
CvMcens(Surv(time, status) ~ 1, colonsamp, distr = "normal")

# Anderson-Darling
ADcens(Surv(time, status) ~ 1, colonsamp, distr = "normal")

# Generalized chi-squared-type test
chisqcens(Surv(time, status) ~ 1, colonsamp, M = 6, distr = "normal")

The graphical tools provide nice plots via the functions cumhazPlot(), kmPlot() and probPlot(). See several examples using the nba data set:

data(nba)
cumhazPlot(Surv(survtime, cens) ~ 1, nba, distr = c("expo", "normal", "gumbel"))
kmPlot(Surv(survtime, cens) ~ 1, nba, distr = c("normal", "weibull", "lognormal"),
       prnt = FALSE)
probPlot(Surv(survtime, cens) ~ 1, nba, "lognorm", plots = c("PP", "QQ", "SP"),
         ggp = TRUE, m = matrix(1:3, nr = 1))

Help Manual

Help pageTopics
Goodness-of-Fit Methods for Complete and Right-Censored Data.GofCens-package GofCens
Anderson-Darling test for complete and right-censored dataADcens ADcens.default ADcens.formula
General chi-squared statistics for right-censored data.chisqcens chisqcens.default chisqcens.formula
Cumulative hazard plots to check the goodness of fit of parametric modelscumhazPlot cumhazPlot.default cumhazPlot.formula
Cramér-von Mises test for complete and right-censored dataCvMcens CvMcens.default CvMcens.formula
Kolmogorov-Smirnov, Cramér-von Mises, and Anderson-Darling tests for complete and right-censored datagofcens gofcens.default gofcens.formula
Plot of the Kaplan-Meier and parametric estimationskmPlot kmPlot.default kmPlot.formula
Kolmogorov-Smirnov test for complete and right-censored dataKScens KScens.default KScens.formula
Survival times of former NBA players.nba
Printing method for 'ADcens' object.print.ADcens
Printing method for 'chisqcens' object.print.chisqcens
Printing method for 'CvMcens' object.print.CvMcens
Printing method for 'gofcens' object.print.gofcens
Printing method for 'KScens' object.print.KScens
Probability plots to check the goodness of fit of parametric modelsprobPlot probPlot.default probPlot.formula