Package: FlexVarJM 0.1.0

Léonie Courcoul

FlexVarJM: Estimate Joint Models with Subject-Specific Variance

Estimation of mixed models including a subject-specific variance which can be time and covariate dependent. In the joint model framework, the package handles left truncation and allows a flexible dependence structure between the competing events and the longitudinal marker. The estimation is performed under the frequentist framework, using the Marquardt-Levenberg algorithm. (Courcoul, Tzourio, Woodward, Barbieri, Jacqmin-Gadda (2023) <arxiv:2306.16785>).

Authors:Léonie Courcoul [aut, cre], Antoine Barbieri [aut], Hélène Jacqmin-Gadda [aut]

FlexVarJM_0.1.0.tar.gz
FlexVarJM_0.1.0.tar.gz(r-4.5-noble)FlexVarJM_0.1.0.tar.gz(r-4.4-noble)
FlexVarJM_0.1.0.tgz(r-4.4-emscripten)FlexVarJM_0.1.0.tgz(r-4.3-emscripten)
FlexVarJM.pdf |FlexVarJM.html
FlexVarJM/json (API)
NEWS

# Install 'FlexVarJM' in R:
install.packages('FlexVarJM', repos = 'https://cloud.r-project.org')

Bug tracker:https://github.com/leoniecourcoul/flexvarjm/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
Datasets:

On CRAN:

Conda:

openblascpp

2.70 score 170 downloads 4 exports 104 dependencies

Last updated 1 years agofrom:ae1340b859. Checks:3 OK. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKMar 15 2025
R-4.5-linux-x86_64OKMar 15 2025
R-4.4-linux-x86_64OKMar 15 2025

Exports:goodness_of_fitlsjmlsmmpredyn

Dependencies:abindbackportsbootbroomcarcarDataclicodetoolscolorspacecommonmarkcorrplotcowplotcpp11curldata.tableDerivdoBydoParalleldplyrevaluateexactRankTestsfansifarverforeachFormulagenericsggplot2ggpubrggrepelggsciggsignifggtextgluegridExtragridtextgtablehighrisobanditeratorsjpegkm.ciKMsurvknitrlabelinglatticelcmmlifecyclelme4magrittrmarkdownmarqLevAlgMASSMatrixMatrixModelsmaxstatmgcvmicrobenchmarkminqamodelrmunsellmvtnormnlmenloptrnnetnumDerivpbkrtestpillarpkgconfigpngpolynompurrrquantregR6randtoolboxrbibutilsRColorBrewerRcppRcppArmadilloRcppEigenRdpackreformulasrlangrngWELLrstatixscalesspacefillrSparseMstringistringrsurvivalsurvminersurvMisctibbletidyrtidyselectutf8vctrsviridisLitewithrxfunxml2xtableyamlzoo

FlexVarJM

Rendered fromFlexVarJM.Rmdusingknitr::rmarkdownon Mar 15 2025.

Last update: 2023-11-21
Started: 2023-11-21

Citation

To cite package ‘FlexVarJM’ in publications use:

Courcoul L, Barbieri A, Jacqmin-Gadda H (2023). FlexVarJM: Estimate Joint Models with Subject-Specific Variance. R package version 0.1.0, https://CRAN.R-project.org/package=FlexVarJM.

Corresponding BibTeX entry:

  @Manual{,
    title = {FlexVarJM: Estimate Joint Models with Subject-Specific
      Variance},
    author = {Léonie Courcoul and Antoine Barbieri and Hélène
      Jacqmin-Gadda},
    year = {2023},
    note = {R package version 0.1.0},
    url = {https://CRAN.R-project.org/package=FlexVarJM},
  }

Readme and manuals

FlexVarJM

The goal of FlexVarJM is to estimate joint model with subject-specific time-dependent variability.

The global function is ‘lsjm’. It handles to estimate joint model with a marker which has a subject-specific time-dependent variability and competing events with the possibility to take into account the left truncation. For more information you can read the corresponding article : https://arxiv.org/abs/2306.16785

Installation

You can install the development version of FlexVarJM from GitHub with:

# install.packages("devtools")
devtools::install_github("LeonieCourcoul/FlexVarJM")

Example

Estimation

This is an example in a simulated dataset where is a binary variable.

$$y_i(t_{ij}) = \color{blue}\tilde{y}i(t{ij}) \color{black} + \epsilon_{ij} = \beta_0 + b_{0i} + (\beta_1 + b_{1i})t_{ij} + \beta_2 * binary_i + \epsilon_{ij} $$

For the first risk, k = 1, we estimate the following risk function :

$$ \lambda_{i1}(t) = \lambda_{01}(t)\exp(\gamma_{11}*binary_i + \color{blue}\alpha_{11}\tilde{y}i(t) + \color{red}\alpha{\sigma 1} \sigma_i(t) \color{black}) $$ And for the second risk, k = 2 : $$ \lambda_{i2}(t) = \lambda_{02}(t)\exp(\color{blue}\alpha_{21}\tilde{y_i}(t) + \color{blue}\alpha_{22}\tilde{y}'i(t) + \color{red}\alpha{\sigma 2} \sigma_i(t) \color{black}) $$

where :

  • $\epsilon_{i}(t_{ij}) \sim \mathcal{N}(0, \color{red}\sigma_i^2\color{black})$ with $\color{red}\log(\sigma_i(t_{ij})) = \mu_0 + \tau_{0i} + (\mu_1 + \tau_{1i})\times t_{ij} + \mu_2 * binary_i$

  • with $b_i=\left(b_{0i},b_{1i}\right)^{\top}$ and $\tau_i=\left(\tau_{0i},\tau_{1i}\right)^{\top}$ assuming that the two sets of random effects $b_i$ and $\tau_i$ are not independent: $$(b_i, \tau_i)^\top \sim N(0, \Sigma)$$

  • $\lambda_{0k}(t) = \kappa_k^2 t^{\kappa_k^2-1}e^{\zeta_{0k}}$ : Weibull function

  • $\tilde{y}'_i(t)$ is the current slope of the marker $y$

example <- lsjm(formFixed = y~visit+binary,
                      formRandom = ~ visit,
                      formGroup = ~ID,
                      formSurv = Surv(time, event ==1 ) ~ binary,
                      timeVar = "visit",
                      data.long = Data_toy,
                      variability_hetero = TRUE,
                      formFixedVar =~visit+binary,
                      formRandomVar =~visit,
                      correlated_re = TRUE,
                      sharedtype = c("current value", "variability"),
                      hazard_baseline = "Weibull",
                      competing_risk = TRUE,
                      formSurv_CR = Surv(time, event ==2 ) ~ 1,
                      hazard_baseline_CR = "Weibull",
                      sharedtype_CR = c("slope", "variability"),
                      formSlopeFixed =~1,
                      formSlopeRandom = ~1,
                      indices_beta_slope = c(2), 
                      S1 = 500,
                      S2 = 1000,
                      nproc = 5,
                      Comp.Rcpp = TRUE
                      )
                      
summary(example)

You can access to the table of estimations and standard deviation with :

example$table.res

The computing time is given by :

example$time.compute

The output of the marqLevAlg algorithm is in :

example$result

Finally, some elements of control are in :

example$control

Goodness-of-fit

You can check the goodness-of-fit of the longitudinal submodel and of the survival submodel by computing the predicted random effects :

goodness <- goodness_of_fit(example, graph = T)

Predictions

You can compute the probability for (new) individual(s) to have event 1 or 2 between time s and time s+t years given that he did not experience any event before time s, its trajectory of marker until time s ans the set of estimated parameters. To have a ‘IC%’ confidence interval, the predictions are computed ‘nb.draws’ time and the percentiles of the predictions are computed. For example, for individuals 1 and 3 to experiment the event 1 at time 1.5, 2, and 3, given their measurements until time 1 :

newdata <- Data_toy[which(Data_toy$ID %in% c(1,3)),]
predyn(newdata,example,1, c(1.5,2,3), event = 1, IC = 95, nb.draws = 500, graph = TRUE)

Help Manual

Help pageTopics
Data_toyData_toy
Initialisation of Survival Data at Gauss Kronrod time pointsdata.GaussKronrod
Initialisation of Survival Data at Gauss Kronrod time points 2data.GaussKronrod2
Management of longitudinal datadata.manag.long
Management of survival datadata.manag.surv
Management of data for longitudinal submodeldata.time
Gauss-Kronrod nodes and weightsgaussKronrod
Predictions for the goodness of fit, of the random effects, the current value for each individuals and the cumulative hazard function for both eventsgoodness_of_fit
Initialisation of Longitudinal Submodelinitial.long
Log-likelihood computationlog_llh
Log-likelihood computation in RCPPlog_llh_rcpp
lsjm : Estimation of joint model for longitudinal data with a subject-specific time-dependent variability and time-to-event data.lsjm
lsmm : Estimation of location scale mixed modellsmm
Predictions computationpred_s.t.bootstrap.tps
Predictions computationpred_s.t.ponctuel.tps
Dynamic prediction for new individualspredyn