Package: BRISC 1.0.6

Arkajyoti Saha

BRISC: Fast Inference for Large Spatial Datasets using BRISC

Fits bootstrap with univariate spatial regression models using Bootstrap for Rapid Inference on Spatial Covariances (BRISC) for large datasets using nearest neighbor Gaussian processes detailed in Saha and Datta (2018) <doi:10.1002/sta4.184>.

Authors:Arkajyoti Saha [aut, cre], Abhirup Datta [aut], Jorge Nocedal [ctb], Naoaki Okazaki [ctb], Lukas M. Weber [ctb]

BRISC_1.0.6.tar.gz
BRISC_1.0.6.tar.gz(r-4.5-noble)BRISC_1.0.6.tar.gz(r-4.4-noble)
BRISC_1.0.6.tgz(r-4.4-emscripten)BRISC_1.0.6.tgz(r-4.3-emscripten)
BRISC.pdf |BRISC.html
BRISC/json (API)

# Install 'BRISC' in R:
install.packages('BRISC', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/arkajyotisaha/brisc/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library

On CRAN:

Conda:

openblascppopenmp

1.78 score 2 packages 651 downloads 9 exports 6 dependencies

Last updated 5 months agofrom:f9734a6cbd. Checks:2 OK. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKMar 02 2025
R-4.5-linux-x86_64OKMar 02 2025

Exports:BRISC_bootstrapBRISC_correlationBRISC_decorrelationBRISC_estimationBRISC_neighborBRISC_orderBRISC_predictionBRISC_simulationBRISC_variogram.ci

Dependencies:matrixStatspbapplyRANNRcppRcppArmadillordist