Package: ANN2 2.3.4

Bart Lammers

ANN2: Artificial Neural Networks for Anomaly Detection

Training of neural networks for classification and regression tasks using mini-batch gradient descent. Special features include a function for training autoencoders, which can be used to detect anomalies, and some related plotting functions. Multiple activation functions are supported, including tanh, relu, step and ramp. For the use of the step and ramp activation functions in detecting anomalies using autoencoders, see Hawkins et al. (2002) <doi:10.1007/3-540-46145-0_17>. Furthermore, several loss functions are supported, including robust ones such as Huber and pseudo-Huber loss, as well as L1 and L2 regularization. The possible options for optimization algorithms are RMSprop, Adam and SGD with momentum. The package contains a vectorized C++ implementation that facilitates fast training through mini-batch learning.

Authors:Bart Lammers

ANN2_2.3.4.tar.gz
ANN2_2.3.4.tar.gz(r-4.5-noble)ANN2_2.3.4.tar.gz(r-4.4-noble)
ANN2_2.3.4.tgz(r-4.4-emscripten)ANN2_2.3.4.tgz(r-4.3-emscripten)
ANN2.pdf |ANN2.html
ANN2/json (API)

# Install 'ANN2' in R:
install.packages('ANN2', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/bflammers/ann2/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library

openblascppopenmp

3.47 score 59 scripts 801 downloads 14 mentions 10 exports 51 dependencies

Last updated 4 years agofrom:61e69836bc. Checks:OK: 1 NOTE: 1. Indexed: no.

TargetResultDate
Doc / VignettesOKDec 19 2024
R-4.5-linux-x86_64NOTEDec 19 2024

Exports:autoencodercompression_plotdecodeencodeneuralnetworkread_ANNreconstructreconstruction_plottrainwrite_ANN

Dependencies:briocallrclicolorspacecrayondescdiffobjdigestevaluatefansifarverfsggplot2gluegtableisobandjsonlitelabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgbuildpkgconfigpkgloadplyrpraiseprocessxpsR6RColorBrewerRcppRcppArmadilloreshape2rlangrprojrootscalesstringistringrtestthattibbleutf8vctrsviridisLitewaldowithr