
Package: ANN2 (via r-universe)
October 1, 2024

Type Package

Title Artificial Neural Networks for Anomaly Detection

Version 2.3.4

Date 2020-11-29

Author Bart Lammers

Maintainer Bart Lammers <bart.f.lammers@gmail.com>

Description Training of neural networks for classification and
regression tasks using mini-batch gradient descent. Special
features include a function for training autoencoders, which
can be used to detect anomalies, and some related plotting
functions. Multiple activation functions are supported,
including tanh, relu, step and ramp. For the use of the step
and ramp activation functions in detecting anomalies using
autoencoders, see Hawkins et al. (2002)
<doi:10.1007/3-540-46145-0_17>. Furthermore, several loss
functions are supported, including robust ones such as Huber
and pseudo-Huber loss, as well as L1 and L2 regularization. The
possible options for optimization algorithms are RMSprop, Adam
and SGD with momentum. The package contains a vectorized C++
implementation that facilitates fast training through
mini-batch learning.

License GPL (>= 3) | file LICENSE

URL https://github.com/bflammers/ANN2

Encoding UTF-8

LazyData true

SystemRequirements C++11

Imports Rcpp (>= 0.12.18), reshape2 (>= 1.4.3), ggplot2 (>= 3.0.0),
viridisLite (>= 0.3.0), methods

LinkingTo Rcpp, RcppArmadillo, testthat

Suggests testthat

RoxygenNote 7.1.1

1

https://doi.org/10.1007/3-540-46145-0_17
https://github.com/bflammers/ANN2

2 autoencoder

NeedsCompilation yes

Repository CRAN

Date/Publication 2020-12-01 10:00:02 UTC

Contents

ANN . 2
autoencoder . 2
compression_plot . 5
decode . 6
encode . 6
neuralnetwork . 7
plot.ANN . 10
predict.ANN . 11
print.ANN . 11
read_ANN . 12
reconstruct . 12
reconstruction_plot . 13
train . 13
write_ANN . 15

Index 16

ANN Rcpp module exposing C++ class ANN

Description

C++ class ANN is the work horse of this package

autoencoder Train an Autoencoding Neural Network

Description

Construct and train an Autoencoder by setting the target variables equal to the input variables. The
number of nodes in the middle layer should be smaller than the number of input variables in X in
order to create a bottleneck layer.

autoencoder 3

Usage

autoencoder(
X,
hidden.layers,
standardize = TRUE,
loss.type = "squared",
huber.delta = 1,
activ.functions = "tanh",
step.H = 5,
step.k = 100,
optim.type = "sgd",
learn.rates = 1e-04,
L1 = 0,
L2 = 0,
sgd.momentum = 0.9,
rmsprop.decay = 0.9,
adam.beta1 = 0.9,
adam.beta2 = 0.999,
n.epochs = 100,
batch.size = 32,
drop.last = TRUE,
val.prop = 0.1,
verbose = TRUE,
random.seed = NULL

)

Arguments

X matrix with explanatory variables

hidden.layers vector specifying the number of nodes in each layer. The number of hidden
layers in the network is implicitly defined by the length of this vector. Set
hidden.layers to NA for a network with no hidden layers

standardize logical indicating if X and Y should be standardized before training the network.
Recommended to leave at TRUE for faster convergence.

loss.type which loss function should be used. Options are "squared", "absolute", "huber"
and "pseudo-huber"

huber.delta used only in case of loss functions "huber" and "pseudo-huber". This parameter
controls the cut-off point between quadratic and absolute loss.

activ.functions

character vector of activation functions to be used in each hidden layer. Possible
options are ’tanh’, ’sigmoid’, ’relu’, ’linear’, ’ramp’ and ’step’. Should be either
the size of the number of hidden layers or equal to one. If a single activation
type is specified, this type will be broadcasted across the hidden layers.

step.H number of steps of the step activation function. Only applicable if activ.functions
includes ’step’

4 autoencoder

step.k parameter controlling the smoothness of the step activation function. Larger
values lead to a less smooth step function. Only applicable if activ.functions
includes ’step’.

optim.type type of optimizer to use for updating the parameters. Options are ’sgd’, ’rm-
sprop’ and ’adam’. SGD is implemented with momentum.

learn.rates the size of the steps to make in gradient descent. If set too large, the optimization
might not converge to optimal values. If set too small, convergence will be slow.
Should be either the size of the number of hidden layers plus one or equal to
one. If a single learn rate is specified, this learn rate will be broadcasted across
the layers.

L1 L1 regularization. Non-negative number. Set to zero for no regularization.

L2 L2 regularization. Non-negative number. Set to zero for no regularization.

sgd.momentum numeric value specifying how much momentum should be used. Set to zero for
no momentum, otherwise a value between zero and one.

rmsprop.decay level of decay in the rms term. Controls the strength of the exponential decay
of the squared gradients in the term that scales the gradient before the parameter
update. Common values are 0.9, 0.99 and 0.999

adam.beta1 level of decay in the first moment estimate (the mean). The recommended value
is 0.9

adam.beta2 level of decay in the second moment estimate (the uncentered variance). The
recommended value is 0.999

n.epochs the number of epochs to train. One epoch is a single iteration through the train-
ing data.

batch.size the number of observations to use in each batch. Batch learning is computation-
ally faster than stochastic gradient descent. However, large batches might not
result in optimal learning, see Efficient Backprop by LeCun for details.

drop.last logical. Only applicable if the size of the training set is not perfectly devisible by
the batch size. Determines if the last chosen observations should be discarded
(in the current epoch) or should constitute a smaller batch. Note that a smaller
batch leads to a noisier approximation of the gradient.

val.prop proportion of training data to use for tracking the loss on a validation set dur-
ing training. Useful for assessing the training process and identifying possible
overfitting. Set to zero for only tracking the loss on the training data.

verbose logical indicating if additional information should be printed

random.seed optional seed for the random number generator

Details

A function for training Autoencoders. During training, the network will learn a generalised rep-
resentation of the data (generalised since the middle layer acts as a bottleneck, resulting in repro-
duction of only the most important features of the data). As such, the network models the normal
state of the data and therefore has a denoising property. This property can be exploited to detect
anomalies by comparing input to reconstruction. If the difference (the reconstruction error) is large,
the observation is a possible anomaly.

compression_plot 5

Value

An ANN object. Use function plot(<object>) to assess loss on training and optionally validation
data during training process. Use function predict(<object>, <newdata>) for prediction.

Examples

Autoencoder example
X <- USArrests
AE <- autoencoder(X, c(10,2,10), loss.type = 'pseudo-huber',

activ.functions = c('tanh','linear','tanh'),
batch.size = 8, optim.type = 'adam',
n.epochs = 1000, val.prop = 0)

Plot loss during training
plot(AE)

Make reconstruction and compression plots
reconstruction_plot(AE, X)
compression_plot(AE, X)

Reconstruct data and show states with highest anomaly scores
recX <- reconstruct(AE, X)
sort(recX$anomaly_scores, decreasing = TRUE)[1:5]

compression_plot Compression plot

Description

plot compressed observation in pairwise dimensions

Usage

compression_plot(object, ...)

S3 method for class 'ANN'
compression_plot(object, X, colors = NULL, jitter = FALSE, ...)

Arguments

object autoencoder object of class ANN

... arguments to be passed to jitter()

X data matrix with original values to be compressed and plotted

colors optional vector of discrete colors

jitter logical specifying whether to apply jitter to the compressed values. Especially
useful whith step activation function that clusters the compressions and recon-
structions.

6 encode

Details

Matrix plot of pairwise dimensions

Value

Plots

decode Decoding step

Description

Decompress low-dimensional representation resulting from the nodes of the middle layer. Output
are the reconstructed inputs to function encode()

Usage

decode(object, ...)

S3 method for class 'ANN'
decode(object, compressed, compression.layer = NULL, ...)

Arguments

object Object of class ANN

... arguments to be passed down

compressed Compressed data
compression.layer

Integer specifying which hidden layer is the compression layer. If NULL this
parameter is inferred from the structure of the network (hidden layer with small-
est number of nodes)

encode Encoding step

Description

Compress data according to trained replicator or autoencoder. Outputs are the activations of the
nodes in the middle layer for each observation in newdata

Usage

encode(object, ...)

S3 method for class 'ANN'
encode(object, newdata, compression.layer = NULL, ...)

neuralnetwork 7

Arguments

object Object of class ANN

... arguments to be passed down

newdata Data to compress
compression.layer

Integer specifying which hidden layer is the compression layer. If NULL this
parameter is inferred from the structure of the network (hidden layer with small-
est number of nodes)

neuralnetwork Train a Neural Network

Description

Construct and train a Multilayer Neural Network for regression or classification

Usage

neuralnetwork(
X,
y,
hidden.layers,
regression = FALSE,
standardize = TRUE,
loss.type = "log",
huber.delta = 1,
activ.functions = "tanh",
step.H = 5,
step.k = 100,
optim.type = "sgd",
learn.rates = 1e-04,
L1 = 0,
L2 = 0,
sgd.momentum = 0.9,
rmsprop.decay = 0.9,
adam.beta1 = 0.9,
adam.beta2 = 0.999,
n.epochs = 100,
batch.size = 32,
drop.last = TRUE,
val.prop = 0.1,
verbose = TRUE,
random.seed = NULL

)

8 neuralnetwork

Arguments

X matrix with explanatory variables

y matrix with dependent variables. For classification this should be a one-columns
matrix containing the classes - classes will be one-hot encoded.

hidden.layers vector specifying the number of nodes in each layer. The number of hidden
layers in the network is implicitly defined by the length of this vector. Set
hidden.layers to NA for a network with no hidden layers

regression logical indicating regression or classification. In case of TRUE (regression), the
activation function in the last hidden layer will be the linear activation function
(identity function). In case of FALSE (classification), the activation function in
the last hidden layer will be the softmax, and the log loss function should be
used.

standardize logical indicating if X and Y should be standardized before training the network.
Recommended to leave at TRUE for faster convergence.

loss.type which loss function should be used. Options are "log", "squared", "absolute",
"huber" and "pseudo-huber". The log loss function should be used for classifi-
cation (regression = FALSE), and ONLY for classification.

huber.delta used only in case of loss functions "huber" and "pseudo-huber". This parameter
controls the cut-off point between quadratic and absolute loss.

activ.functions

character vector of activation functions to be used in each hidden layer. Possible
options are ’tanh’, ’sigmoid’, ’relu’, ’linear’, ’ramp’ and ’step’. Should be either
the size of the number of hidden layers or equal to one. If a single activation
type is specified, this type will be broadcasted across the hidden layers.

step.H number of steps of the step activation function. Only applicable if activ.functions
includes ’step’.

step.k parameter controlling the smoothness of the step activation function. Larger
values lead to a less smooth step function. Only applicable if activ.functions
includes ’step’.

optim.type type of optimizer to use for updating the parameters. Options are ’sgd’, ’rm-
sprop’ and ’adam’. SGD is implemented with momentum.

learn.rates the size of the steps to make in gradient descent. If set too large, the optimization
might not converge to optimal values. If set too small, convergence will be slow.
Should be either the size of the number of hidden layers plus one or equal to
one. If a single learn rate is specified, this learn rate will be broadcasted across
the layers.

L1 L1 regularization. Non-negative number. Set to zero for no regularization.

L2 L2 regularization. Non-negative number. Set to zero for no regularization.

sgd.momentum numeric value specifying how much momentum should be used. Set to zero for
no momentum, otherwise a value between zero and one.

rmsprop.decay level of decay in the rms term. Controls the strength of the exponential decay
of the squared gradients in the term that scales the gradient before the parameter
update. Common values are 0.9, 0.99 and 0.999.

neuralnetwork 9

adam.beta1 level of decay in the first moment estimate (the mean). The recommended value
is 0.9.

adam.beta2 level of decay in the second moment estimate (the uncentered variance). The
recommended value is 0.999.

n.epochs the number of epochs to train. One epoch is a single iteration through the train-
ing data.

batch.size the number of observations to use in each batch. Batch learning is computation-
ally faster than stochastic gradient descent. However, large batches might not
result in optimal learning, see Efficient Backprop by LeCun for details.

drop.last logical. Only applicable if the size of the training set is not perfectly devisible by
the batch size. Determines if the last chosen observations should be discarded
(in the current epoch) or should constitute a smaller batch. Note that a smaller
batch leads to a noisier approximation of the gradient.

val.prop proportion of training data to use for tracking the loss on a validation set dur-
ing training. Useful for assessing the training process and identifying possible
overfitting. Set to zero for only tracking the loss on the training data.

verbose logical indicating if additional information should be printed

random.seed optional seed for the random number generator

Details

A genereric function for training Neural Networks for classification and regression problems. Var-
ious types of activation and loss functions are supported, as well as L1 and L2 regularization.
Possible optimizer include SGD (with or without momentum), RMSprop and Adam.

Value

An ANN object. Use function plot(<object>) to assess loss on training and optionally validation
data during training process. Use function predict(<object>, <newdata>) for prediction.

References

LeCun, Yann A., et al. "Efficient backprop." Neural networks: Tricks of the trade. Springer Berlin
Heidelberg, 2012. 9-48.

Examples

Example on iris dataset
Prepare test and train sets
random_draw <- sample(1:nrow(iris), size = 100)
X_train <- iris[random_draw, 1:4]
y_train <- iris[random_draw, 5]
X_test <- iris[setdiff(1:nrow(iris), random_draw), 1:4]
y_test <- iris[setdiff(1:nrow(iris), random_draw), 5]

Train neural network on classification task
NN <- neuralnetwork(X = X_train, y = y_train, hidden.layers = c(5, 5),

optim.type = 'adam', learn.rates = 0.01, val.prop = 0)

10 plot.ANN

Plot the loss during training
plot(NN)

Make predictions
y_pred <- predict(NN, newdata = X_test)

Plot predictions
correct <- (y_test == y_pred$predictions)
plot(X_test, pch = as.numeric(y_test), col = correct + 2)

plot.ANN Plot training and validation loss

Description

plot Generate plots of the loss against epochs

Usage

S3 method for class 'ANN'
plot(x, max.points = 1000, ...)

Arguments

x Object of class ANN

max.points Maximum number of points to plot, set to NA, NULL or Inf to include all points
in the plot

... further arguments to be passed to plot

Details

A generic function for plot loss of neural net

Value

Plots

predict.ANN 11

predict.ANN Make predictions for new data

Description

predict Predict class or value for new data

Usage

S3 method for class 'ANN'
predict(object, newdata, ...)

Arguments

object Object of class ANN

newdata Data to make predictions on

... further arguments (not in use)

Details

A genereric function for training neural nets

Value

A list with predicted classes for classification and fitted probabilities

print.ANN Print ANN

Description

Print info on trained Neural Network

Usage

S3 method for class 'ANN'
print(x, ...)

Arguments

x Object of class ANN

... Further arguments

12 reconstruct

read_ANN Read ANN object from file

Description

Deserialize ANN object from binary file

Usage

read_ANN(file)

Arguments

file character specifying file path

Value

Object of class ANN

reconstruct Reconstruct data using trained ANN object of type autoencoder

Description

reconstruct takes new data as input and reconstructs the observations using a trained replicator or
autoencoder object.

Usage

reconstruct(object, X)

Arguments

object Object of class ANN created with autoencoder()

X data matrix to reconstruct

Details

A genereric function for training neural nets

Value

Reconstructed observations and anomaly scores (reconstruction errors)

reconstruction_plot 13

reconstruction_plot Reconstruction plot

Description

plots original and reconstructed data points in a single plot with connecting lines between original
value and corresponding reconstruction

Usage

reconstruction_plot(object, ...)

S3 method for class 'ANN'
reconstruction_plot(object, X, colors = NULL, ...)

Arguments

object autoencoder object of class ANN

... arguments to be passed down

X data matrix with original values to be reconstructed and plotted

colors optional vector of discrete colors. The reconstruction errors are are used as color
if this argument is not specified

Details

Matrix plot of pairwise dimensions

Value

Plots

train Continue training of a Neural Network

Description

Continue training of a neural network object returned by neuralnetwork() or autoencoder()

14 train

Usage

train(
object,
X,
y = NULL,
n.epochs = 100,
batch.size = 32,
drop.last = TRUE,
val.prop = 0.1,
random.seed = NULL

)

Arguments

object object of class ANN produced by neuralnetwork() or autoencoder()

X matrix with explanatory variables

y matrix with dependent variables. Not required if object is an autoencoder

n.epochs the number of epochs to train. This parameter largely determines the training
time (one epoch is a single iteration through the training data).

batch.size the number of observations to use in each batch. Batch learning is computation-
ally faster than stochastic gradient descent. However, large batches might not
result in optimal learning, see Efficient Backprop by Le Cun for details.

drop.last logical. Only applicable if the size of the training set is not perfectly devisible by
the batch size. Determines if the last chosen observations should be discarded
(in the current epoch) or should constitute a smaller batch. Note that a smaller
batch leads to a noisier approximation of the gradient.

val.prop proportion of training data to use for tracking the loss on a validation set dur-
ing training. Useful for assessing the training process and identifying possible
overfitting. Set to zero for only tracking the loss on the training data.

random.seed optional seed for the random number generator

Details

A new validation set is randomly chosen. This can result in irregular jumps in the plot given by
plot.ANN().

Value

An ANN object. Use function plot(<object>) to assess loss on training and optionally validation
data during training process. Use function predict(<object>, <newdata>) for prediction.

References

LeCun, Yann A., et al. "Efficient backprop." Neural networks: Tricks of the trade. Springer Berlin
Heidelberg, 2012. 9-48.

write_ANN 15

Examples

Train a neural network on the iris dataset
X <- iris[,1:4]
y <- iris$Species
NN <- neuralnetwork(X, y, hidden.layers = 10, sgd.momentum = 0.9,

learn.rates = 0.01, val.prop = 0.3, n.epochs = 100)

Plot training and validation loss during training
plot(NN)

Continue training for 1000 epochs
train(NN, X, y, n.epochs = 200, val.prop = 0.3)

Again plot the loss - note the jump in the validation loss at the 100th epoch
This is due to the random selection of a new validation set
plot(NN)

write_ANN Write ANN object to file

Description

Serialize ANN object to binary file

Usage

write_ANN(object, file)

Arguments

object Object of class ANN

file character specifying file path

Index

ANN, 2
autoencoder, 2

compression_plot, 5

decode, 6

encode, 6

neuralnetwork, 7

plot.ANN, 10
predict.ANN, 11
print.ANN, 11

Rcpp_ANN-class (ANN), 2
read_ANN, 12
reconstruct, 12
reconstruction_plot, 13

train, 13

write_ANN, 15

16

	ANN
	autoencoder
	compression_plot
	decode
	encode
	neuralnetwork
	plot.ANN
	predict.ANN
	print.ANN
	read_ANN
	reconstruct
	reconstruction_plot
	train
	write_ANN
	Index

