Package: tspredit 1.0.787
tspredit: Time Series Prediction Integrated Tuning
Prediction is one of the most important activities while working with time series. There are many alternative ways to model the time series. Finding the right one is challenging to model them. Most data-driven models (either statistical or machine learning) demand tuning. Setting them right is mandatory for good predictions. It is even more complex since time series prediction also demands choosing a data pre-processing that complies with the chosen model. Many time series frameworks have features to build and tune models. The package differs as it provides a framework that seamlessly integrates tuning data pre-processing activities with the building of models. The package provides functions for defining and conducting time series prediction, including data pre(post)processing, decomposition, tuning, modeling, prediction, and accuracy assessment. More information is available at Izau et al. <doi:10.5753/sbbd.2022.224330>.
Authors:
tspredit_1.0.787.tar.gz
tspredit_1.0.787.tar.gz(r-4.5-noble)tspredit_1.0.787.tar.gz(r-4.4-noble)
tspredit_1.0.787.tgz(r-4.4-emscripten)tspredit_1.0.787.tgz(r-4.3-emscripten)
tspredit.pdf |tspredit.html✨
tspredit/json (API)
# Install 'tspredit' in R: |
install.packages('tspredit', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/cefet-rj-dal/daltoolbox/issues
- fertilizers - Fertilizers
Last updated 20 days agofrom:ef70883d72. Checks:OK: 2. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Dec 04 2024 |
R-4.5-linux | OK | Dec 04 2024 |
Exports:ts_aug_awarenessts_aug_awaresmoothts_aug_flipts_aug_jitterts_aug_nonets_aug_shrinkts_aug_stretchts_aug_wormholets_fil_emats_fil_emdts_fil_fftts_fil_hpts_fil_kalmants_fil_lowessts_fil_mats_fil_nonets_fil_qests_fil_recursivets_fil_remdts_fil_seas_adjts_fil_sests_fil_smoothts_fil_splinets_fil_waveletts_fil_winsorts_maintunets_norm_none
Dependencies:askpassbitbit64bitopsbootcaretcaToolscellrangerclassclicliprclockclustercodetoolscolorspacecpp11crayoncurldaltoolboxdata.tabledbscanDescToolsdiagramdigestdotCall64dplyre1071elmNNRcppEMDExactexpmfansifarverfieldsFNNforcatsforeachforecastfracdifffuturefuture.applygenericsggplot2gldglobalsgluegowergplotsgtablegtoolshardhathavenherehhthmshttripredisobanditeratorsjsonliteKernelKnnKernSmoothKFASlabelinglatticelavalifecyclelistenvlmomlmtestlocfitlubridatemagrittrmapsMASSMatrixmFiltermgcvmimeMLmetricsModelMetricsmunsellmvtnormnlmennetnumDerivopensslparallellypillarpkgconfigplyrpngprettyunitspROCprodlimprogressprogressrproxypurrrquadprogquantmodR6randomForestrappdirsRColorBrewerRcppRcppArmadilloRcppTOMLreadrreadxlrecipesrematchreshapereshape2reticulaterlangROCRrootSolverpartrprojrootrstudioapiscalesshapespamSQUAREMstringistringrsurvivalsystibbletidyrtidyselecttimechangetimeDatetreetseriesTTRtzdburcautf8vctrsviridisLitevroomwaveletswithrxtszoo
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Fertilizers (Regression) | fertilizers |
Augmentation by awareness | ts_aug_awareness |
Augmentation by awareness smooth | ts_aug_awaresmooth |
Augmentation by flip | ts_aug_flip |
Augmentation by jitter | ts_aug_jitter |
no augmentation | ts_aug_none |
Augmentation by shrink | ts_aug_shrink |
Augmentation by stretch | ts_aug_stretch |
Augmentation by wormhole | ts_aug_wormhole |
Time Series Exponential Moving Average | ts_fil_ema |
EMD Filter | ts_fil_emd |
FFT Filter | ts_fil_fft |
Hodrick-Prescott Filter | ts_fil_hp |
Kalman Filter | ts_fil_kalman |
Lowess Smoothing | ts_fil_lowess |
Time Series Moving Average | ts_fil_ma |
no filter | ts_fil_none |
Quadratic Exponential Smoothing | ts_fil_qes |
Recursive Filter | ts_fil_recursive |
EMD Filter | ts_fil_remd |
Seasonal Adjustment | ts_fil_seas_adj |
Simple Exponential Smoothing | ts_fil_ses |
Time Series Smooth | ts_fil_smooth |
Smoothing Splines | ts_fil_spline |
Wavelet Filter | ts_fil_wavelet |
Winsorization of Time Series | ts_fil_winsor |
Time Series Tune | ts_maintune |
no normalization | ts_norm_none |