Package: tsoutliers 0.6-10

Javier López-de-Lacalle

tsoutliers: Detection of Outliers in Time Series

Detection of outliers in time series following the Chen and Liu (1993) <doi:10.2307/2290724> procedure. Innovational outliers, additive outliers, level shifts, temporary changes and seasonal level shifts are considered.

Authors:Javier López-de-Lacalle <[email protected]>

tsoutliers_0.6-10.tar.gz
tsoutliers_0.6-10.tar.gz(r-4.5-noble)tsoutliers_0.6-10.tar.gz(r-4.4-noble)
tsoutliers_0.6-10.tgz(r-4.4-emscripten)tsoutliers_0.6-10.tgz(r-4.3-emscripten)
tsoutliers.pdf |tsoutliers.html
tsoutliers/json (API)
NEWS

# Install 'tsoutliers' in R:
install.packages('tsoutliers', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • bde9915 - Data Set: Working Paper 'bde9915'
  • hicp - Data Set: Harmonised Indices of Consumer Prices
  • ipi - Data Set: Industrial Production Indices

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

4.66 score 5 stars 5 packages 2.0k downloads 3 mentions 17 exports 45 dependencies

Last updated 10 months agofrom:130b6315f4. Checks:OK: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKDec 09 2024
R-4.5-linuxOKDec 09 2024

Exports:calendar.effectscoefs2polydiscard.outliersfind.consecutive.outliersJarqueBera.testlocate.outlierslocate.outliers.ilooplocate.outliers.oloopoutliersoutliers.effectsoutliers.regressorsoutliers.tstatisticsplot.tsoutliersprint.tsoutliersremove.outlierstsotso0

Dependencies:clicolorspacecurlfansifarverforecastfracdiffgenericsggplot2gluegtableisobandjsonlitelabelinglatticelifecyclelmtestmagrittrMASSMatrixmgcvmunsellnlmennetpillarpkgconfigquadprogquantmodR6RColorBrewerRcppRcppArmadillorlangscalestibbletimeDatetseriesTTRurcautf8vctrsviridisLitewithrxtszoo

tsoutliers-intro

Rendered fromtsoutliers-intro.Rnwusingutils::Sweaveon Dec 09 2024.

Last update: 2019-02-24
Started: 2015-01-25