Package: transportr 0.1.0

Nicholas Williams

transportr: Transporting Intervention Effects from One Population to Another

Doubly-robust, non-parametric estimators for the transported average treatment effect from Rudolph, Williams, Stuart, and Diaz (2023) <doi:10.48550/arXiv.2304.00117> and the intent-to-treatment average treatment effect from Rudolph and van der Laan (2017) <doi:10.1111/rssb.12213>. Estimators are fit using cross-fitting and nuisance parameters are estimated using the Super Learner algorithm.

Authors:Nicholas Williams [aut, cre, cph], Kara Rudolph [aut, cph]

transportr_0.1.0.tar.gz
transportr_0.1.0.tar.gz(r-4.5-noble)transportr_0.1.0.tar.gz(r-4.4-noble)
transportr_0.1.0.tgz(r-4.4-emscripten)transportr_0.1.0.tgz(r-4.3-emscripten)
transportr.pdf |transportr.html
transportr/json (API)
NEWS

# Install 'transportr' in R:
install.packages('transportr', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/nt-williams/transportr/issues

1.70 score 3 scripts 4 exports 45 dependencies

Last updated 3 days agofrom:054c356813. Checks:2 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 20 2025
R-4.5-linuxOKFeb 20 2025

Exports:tidytransport_atetransport_controltransport_ittate

Dependencies:abindassertthatbackportscheckmateclicodetoolsdata.tabledigestevaluateforeachfuturefuture.applygenericsglmnetglobalsglueifeiteratorslatticelgrlifecyclelistenvmagrittrMatrixmlbenchmlr3mlr3learnersmlr3measuresmlr3miscmlr3superlearnerorigamipalmerpenguinsparadoxparallellyPRROCpurrrR6RcppRcppEigenrlangS7shapesurvivaluuidvctrs