Package: templateICAr 0.9.1
templateICAr: Estimate Brain Networks and Connectivity with ICA and Empirical Priors
Implements the template ICA (independent components analysis) model proposed in Mejia et al. (2020) <doi:10.1080/01621459.2019.1679638> and the spatial template ICA model proposed in proposed in Mejia et al. (2022) <doi:10.1080/10618600.2022.2104289>. Both models estimate subject-level brain as deviations from known population-level networks, which are estimated using standard ICA algorithms. Both models employ an expectation-maximization algorithm for estimation of the latent brain networks and unknown model parameters. Includes direct support for 'CIFTI', 'GIFTI', and 'NIFTI' neuroimaging file formats.
Authors:
templateICAr_0.9.1.tar.gz
templateICAr_0.9.1.tar.gz(r-4.5-noble)templateICAr_0.9.1.tar.gz(r-4.4-noble)
templateICAr_0.9.1.tgz(r-4.4-emscripten)templateICAr_0.9.1.tgz(r-4.3-emscripten)
templateICAr.pdf |templateICAr.html✨
templateICAr/json (API)
NEWS
# Install 'templateICAr' in R: |
install.packages('templateICAr', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/mandymejia/templateicar/issues
Last updated 4 days agofrom:663f14aa5b. Checks:OK: 2. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 25 2024 |
R-4.5-linux | OK | Nov 25 2024 |
Exports:activationsdim_reduceestimate_templateestimate_template_FCestimate_template_from_DRexport_templategetInvCovARgroupICA.ciftimake_meshmake_mesh_2Dnorm_BOLDorthonormresample_templatesqrt_XtXtemplateICA
Dependencies:abindcellWiseclassclicodetoolscolorspaceDEoptimRe1071expmfansifarverfMRIscrubfMRItoolsforeachgamlssgamlss.datagamlss.distggplot2gluegridExtragtableicaisobanditeratorslabelinglatticelifecyclemagrittrMASSMatrixmatrixStatsmgcvmunsellmvtnormnlmepcaPPpeselpillarpkgconfigplyrproxyR6RColorBrewerRcppRcppArmadilloreshape2rlangrobustbaserrcovscalesshapeSQUAREMstringistringrsurvivalsvdtibbleutf8vctrsviridisLitewithr