Package: templateICAr 0.9.1

Amanda Mejia

templateICAr: Estimate Brain Networks and Connectivity with ICA and Empirical Priors

Implements the template ICA (independent components analysis) model proposed in Mejia et al. (2020) <doi:10.1080/01621459.2019.1679638> and the spatial template ICA model proposed in proposed in Mejia et al. (2022) <doi:10.1080/10618600.2022.2104289>. Both models estimate subject-level brain as deviations from known population-level networks, which are estimated using standard ICA algorithms. Both models employ an expectation-maximization algorithm for estimation of the latent brain networks and unknown model parameters. Includes direct support for 'CIFTI', 'GIFTI', and 'NIFTI' neuroimaging file formats.

Authors:Amanda Mejia [aut, cre], Damon Pham [aut], Daniel Spencer [ctb], Mary Beth Nebel [ctb]

templateICAr_0.9.1.tar.gz
templateICAr_0.9.1.tar.gz(r-4.5-noble)templateICAr_0.9.1.tar.gz(r-4.4-noble)
templateICAr_0.9.1.tgz(r-4.4-emscripten)templateICAr_0.9.1.tgz(r-4.3-emscripten)
templateICAr.pdf |templateICAr.html
templateICAr/json (API)
NEWS

# Install 'templateICAr' in R:
install.packages('templateICAr', repos = 'https://cloud.r-project.org')

Bug tracker:https://github.com/mandymejia/templateicar/issues0 issues

On CRAN:

Conda:

3.36 score 23k downloads 15 exports 61 dependencies

Last updated 4 months agofrom:663f14aa5b. Checks:3 OK. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKMar 25 2025
R-4.5-linuxOKMar 25 2025
R-4.4-linuxOKMar 25 2025

Exports:activationsdim_reduceestimate_templateestimate_template_FCestimate_template_from_DRexport_templategetInvCovARgroupICA.ciftimake_meshmake_mesh_2Dnorm_BOLDorthonormresample_templatesqrt_XtXtemplateICA

Dependencies:abindcellWiseclassclicodetoolscolorspaceDEoptimRe1071expmfansifarverfMRIscrubfMRItoolsforeachgamlssgamlss.datagamlss.distggplot2gluegridExtragtableicaisobanditeratorslabelinglatticelifecyclemagrittrMASSMatrixmatrixStatsmgcvmunsellmvtnormnlmepcaPPpeselpillarpkgconfigplyrproxyR6RColorBrewerRcppRcppArmadilloreshape2rlangrobustbaserrcovscalesshapeSQUAREMstringistringrsurvivalsvdtibbleutf8vctrsviridisLitewithr

Citation

To cite {templateICAr} in publications use:

Mejia AF, Nebel MB, Wang Y, Caffo BS, Guo Y (2020). “Template Independent Component Analysis: Targeted and Reliable Estimation of Subject-level Brain Networks Using Big Data Population Priors.” Journal of the American Statistical Association, 115(531), 1151–1177. doi:10.1080/01621459.2019.1679638.

Mejia AF, Bolin D, Yue YR, Wang J, Caffo BS, Nebel MB (2022). “Template Independent Component Analysis with spatial priors for accurate subject-level brain network estimation and inference.” Journal of Computational and Graphical Statistics, 1–35. doi:10.1080/10618600.2022.2104289.

Corresponding BibTeX entries:

  @Article{,
    title = {{T}emplate {I}ndependent {C}omponent {A}nalysis: Targeted
      and Reliable Estimation of Subject-level Brain Networks Using Big
      Data Population Priors},
    author = {Amanda F Mejia and Mary Beth Nebel and Yikai Wang and
      Brian S Caffo and Ying Guo},
    journal = {Journal of the American Statistical Association},
    year = {2020},
    volume = {115},
    number = {531},
    pages = {1151--1177},
    publisher = {American Statistical Association},
    doi = {10.1080/01621459.2019.1679638},
  }
  @Article{,
    title = {{T}emplate {I}ndependent {C}omponent {A}nalysis with
      spatial priors for accurate subject-level brain network
      estimation and inference},
    author = {Amanda F Mejia and David Bolin and Yu Ryan Yue and
      Jiongran Wang and Brian S Caffo and Mary Beth Nebel},
    journal = {Journal of Computational and Graphical Statistics},
    year = {2022},
    number = {just-accepted},
    pages = {1--35},
    publisher = {American Statistical Association},
    doi = {10.1080/10618600.2022.2104289},
  }

Readme and manuals

templateICAr

This package contains functions implementing the template ICA model proposed in Mejia et al. (2019) and the spatial template ICA model proposed in proposed in Mejia et al. (2020+). For both models, subject-level brain networks are estimated as deviations from known population-level networks, which can be estimated using standard ICA algorithms. Both models employ an expectation-maximization algorithm for estimation of the latent brain networks and unknown model parameters.

Template ICA consists of three steps. The main functions associated with each step are listed below.

  1. Template estimation: estimate_template. Can export the results with export_template.
  2. Template ICA model estimation (single-subject): templateICA.
  3. Identification of areas of engagement in each IC (or deviation from the template mean): activations.

Citation

If you use templateICAr please cite the following papers:

Name APA Citation
Template ICA Mejia, A. F., Nebel, M. B., Wang, Y., Caffo, B. S., & Guo, Y. (2020). Template Independent Component Analysis: targeted and reliable estimation of subject-level brain networks using big data population priors. Journal of the American Statistical Association, 115(531), 1151-1177.
Spatial Template ICA Mejia, A. F., Bolin, D., Yue, Y. R., Wang, J., Caffo, B. S., & Nebel, M. B. (2022). Template Independent Component Analysis with spatial priors for accurate subject-level brain network estimation and inference. Journal of Computational and Graphical Statistics, (just-accepted), 1-35.

You can also obtain citation information from within R like so:

citation("templateICAr")

Installation

You can install the development version of templateICAr from Github with:

# install.packages("devtools")
devtools::install_github("mandymejia/templateICAr")

Important Notes on Dependencies:

To analyze or visualize CIFTI-format data, templateICAr depends on the ciftiTools package, which requires an installation of Connectome Workbench. It can be installed from the HCP website.

For fitting the template ICA model with surface-based priors (spatial_model=TRUE in templateICA()), INLA is required. Due to a CRAN policy, INLA cannot be installed automatically. You can obtain it by running install.packages("INLA", repos=c(getOption("repos"), INLA="https://inla.r-inla-download.org/R/stable"), dep=TRUE). Alternatively, dep=FALSE can be used along with manual installation of dependencies as necessary to avoid installing all of the many INLA dependencies, most of which are not actually required. Binaries for alternative Linux builds can be added with the command inla.binary.install(). Note that INLA is not required for standard template ICA.

Depending on the analysis, PARDISO may reduce computation time. To obtain a free academic license forINLA-PARDISO, run inla.pardiso() in R after running library(INLA). Provide an academic email address. Once you obtain a license, point to it using INLA::inla.setOption(pardiso.license = "pardiso.lic") followed by INLA::inla.pardiso.check() to ensure that PARDISO is successfully installed and running.

Help Manual

Help pageTopics
Activations of (spatial) template ICAactivations
Bdiag m2bdiag_m2
Cholesky-based FC samplingChol_samp_fun
PCA-based Dimension Reduction and Prewhiteningdim_reduce
EM Algorithms for Template ICA ModelsEM_templateICA EM_templateICA.independent EM_templateICA.spatial
Universally estimate IW dof parameter nu based on method of moments, so that no empirical variance is under-estimatedestimate_nu
Estimate IW dof parameter nu based on method of momentsestimate_nu_matrix
Estimate templateestimate_template estimate_template.cifti estimate_template.gifti estimate_template.nifti
Estimate FC templateestimate_template_FC
Estimate template from DRestimate_template_from_DR
Estimation of effective sample sizeestimate.ESS
Export templateexport_template
Compute inverse covariance matrix for AR process (up to a constant scaling factor)getInvCovAR
Perform group ICA based on CIFTI datagroupICA.cifti
Compute theoretical Inverse-Wishart variance of covariance matrix elementsIW_var
Compute theoretical Inverse-Wishart variance of correlation matrix elementsIW_var_cor
Compute likelihood in SPDE model for ESS estimationlik
Make INLA mesh from '"surf"' objectmake_mesh
Make 2D INLA meshmake_mesh_2D
Normalize BOLD datanorm_BOLD
Orthonormalizes a square, invertible matrixorthonorm
Plot templateplot.template.cifti
Plot templateplot.template.gifti
Plot templateplot.template.matrix
Plot templateplot.template.nifti
Plot activationsplot.tICA_act.cifti
Plot templateplot.tICA.cifti
Plot templateplot.tICA.matrix
Plot templateplot.tICA.nifti
Estimate residual autocorrelation for prewhiteningpw_estimate
Resample CIFTI templateresample_template
Compute matrix square root of X'Xsqrt_XtX
Summarize a '"template.cifti"' objectprint.summary.template.cifti print.template.cifti summary.template.cifti
Summarize a '"template.gifti"' objectprint.summary.template.gifti print.template.gifti summary.template.gifti
Summarize a '"template.matrix"' objectprint.summary.template.matrix print.template.matrix summary.template.matrix
Summarize a '"template.nifti"' objectprint.summary.template.nifti print.template.nifti summary.template.nifti
Summarize a '"tICA_act.cifti"' objectprint.summary.tICA_act.cifti print.tICA_act.cifti summary.tICA_act.cifti
Summarize a '"tICA_act.matrix"' objectprint.summary.tICA_act.matrix print.tICA_act.matrix summary.tICA_act.matrix
Summarize a '"tICA_act.nifti"' objectprint.summary.tICA_act.nifti print.tICA_act.nifti summary.tICA_act.nifti
Summarize a '"tICA.cifti"' objectprint.summary.tICA.cifti print.tICA.cifti summary.tICA.cifti
Summarize a '"tICA.matrix"' objectprint.summary.tICA.matrix print.tICA.matrix summary.tICA.matrix
Summarize a '"tICA.nifti"' objectprint.summary.tICA.nifti print.tICA.nifti summary.tICA.nifti
Template ICAtemplateICA
Parameter Estimates in EM Algorithm for Template ICA ModelUpdateTheta_templateICA UpdateTheta_templateICA.independent UpdateTheta_templateICA.spatial
Transform upper-triangular elements to matrix formUT2mat
Compute the error between empirical and theoretical variance of covariance matrix elementsvar_sq_err
Compute the overall error between empirical and theoretical variance of CORRELATION matrix elementsvar_sq_err_constrained