Package: spnn 1.2.1

Romin Ebrahimi

spnn: Scale Invariant Probabilistic Neural Networks

Scale invariant version of the original PNN proposed by Specht (1990) <doi:10.1016/0893-6080(90)90049-q> with the added functionality of allowing for smoothing along multiple dimensions while accounting for covariances within the data set. It is written in the R statistical programming language. Given a data set with categorical variables, we use this algorithm to estimate the probabilities of a new observation vector belonging to a specific category. This type of neural network provides the benefits of fast training time relative to backpropagation and statistical generalization with only a small set of known observations.

Authors:Romin Ebrahimi

spnn_1.2.1.tar.gz
spnn_1.2.1.tar.gz(r-4.5-noble)spnn_1.2.1.tar.gz(r-4.4-noble)
spnn_1.2.1.tgz(r-4.4-emscripten)spnn_1.2.1.tgz(r-4.3-emscripten)
spnn.pdf |spnn.html
spnn/json (API)
NEWS

# Install 'spnn' in R:
install.packages('spnn', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

openblascppopenmp

1.00 score 10 scripts 137 downloads 4 exports 3 dependencies

Last updated 5 years agofrom:1988f59c0c. Checks:OK: 1 NOTE: 1. Indexed: no.

TargetResultDate
Doc / VignettesOKDec 12 2024
R-4.5-linux-x86_64NOTEDec 12 2024

Exports:cspnn.learncspnn.predictspnn.learnspnn.predict

Dependencies:MASSRcppRcppArmadillo