Package: spmoran 0.3.3
spmoran: Fast Spatial and Spatio-Temporal Regression using Moran Eigenvectors
A collection of functions for estimating spatial and spatio-temporal regression models. Moran eigenvectors are used as spatial basis functions to efficiently approximate spatially dependent Gaussian processes (i.e., random effects eigenvector spatial filtering; see Murakami and Griffith 2015 <doi:10.1007/s10109-015-0213-7>). The implemented models include linear regression with residual spatial dependence, spatially/spatio-temporally varying coefficient models (Murakami et al., 2017, 2024; <doi:10.1016/j.spasta.2016.12.001>,<doi:10.48550/arXiv.2410.07229>), spatially filtered unconditional quantile regression (Murakami and Seya, 2019 <doi:10.1002/env.2556>), Gaussian and non-Gaussian spatial mixed models through compositionally-warping (Murakami et al. 2021, <doi:10.1016/j.spasta.2021.100520>).
Authors:
spmoran_0.3.3.tar.gz
spmoran_0.3.3.tar.gz(r-4.5-noble)spmoran_0.3.3.tar.gz(r-4.4-noble)
spmoran_0.3.3.tgz(r-4.4-emscripten)spmoran_0.3.3.tgz(r-4.3-emscripten)
spmoran.pdf |spmoran.html✨
spmoran/json (API)
# Install 'spmoran' in R: |
install.packages('spmoran', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/dmuraka/spmoran/issues
Last updated 21 days agofrom:ba5a69a5dd. Checks:OK: 2. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Dec 05 2024 |
R-4.5-linux | OK | Dec 05 2024 |
Exports:addlearn_localbesfbesf_vccoef_marginalcoef_marginal_vcesflsemlslmmeigenmeigen_fmeigen0nongauss_yplot_nplot_qrplot_spredict0resfresf_qrresf_vcweigen
Dependencies:bootclassclassIntcliclustercodetoolscolorspaceDBIdeldirdoParalleldotCall64e1071fansifarverfieldsFNNforeachggplot2gluegtableisobanditeratorsKernSmoothlabelinglatticelifecyclemagrittrmapsMASSMatrixmgcvmunsellnlmepermutepillarpkgconfigproxyR6rARPACKRColorBrewerRcppRcppEigenrlangRSpectras2scalessfspspamspDataspdeptibbleunitsutf8vctrsveganviridisLitewithrwk
Spatial regression using the spmoran package: Boston housing price data examples
Rendered fromboston_sample.pdf.asis
usingR.rsp::asis
on Dec 05 2024.Last update: 2020-05-31
Started: 2020-05-31
Spatio-temporally varying coefficient modeling using the spmoran package
Rendered fromsample_code_spatiotemporal.pdf.asis
usingR.rsp::asis
on Dec 05 2024.Last update: 2024-09-25
Started: 2024-09-25
Transformation-based generalized spatial regression using the spmoran package: Case study examples
Rendered fromvignette_spmoran_nongaussian.pdf.asis
usingR.rsp::asis
on Dec 05 2024.Last update: 2021-09-13
Started: 2021-09-13