Package: sphet 2.1-1

Gianfranco Piras

sphet: Estimation of Spatial Autoregressive Models with and without Heteroskedastic Innovations

Functions for fitting Cliff-Ord-type spatial autoregressive models with and without heteroskedastic innovations using Generalized Method of Moments estimation are provided. Some support is available for fitting spatial HAC models, and for fitting with non-spatial endogeneous variables using instrumental variables.

Authors:Gianfranco Piras [aut, cre], Roger Bivand [ctb]

sphet_2.1-1.tar.gz
sphet_2.1-1.tar.gz(r-4.5-noble)sphet_2.1-1.tar.gz(r-4.4-noble)
sphet_2.1-1.tgz(r-4.4-emscripten)sphet_2.1-1.tgz(r-4.3-emscripten)
sphet.pdf |sphet.html
sphet/json (API)

# Install 'sphet' in R:
install.packages('sphet', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/gpiras/sphet/issues

Datasets:
  • coldis - Object of class distance for Columbus dataset 10-nearest neighbors matrix for columbus dataset
  • knn10columbus - Object of class distance for Columbus dataset 10-nearest neighbors matrix for columbus dataset

4.93 score 1 stars 3 packages 188 scripts 586 downloads 1 mentions 9 exports 38 dependencies

Last updated 20 days agofrom:4f9784f9a7. Checks:ERROR: 1 OK: 1. Indexed: no.

TargetResultDate
Doc / VignettesFAILDec 06 2024
R-4.5-linuxOKDec 06 2024

Exports:circulardistancegstslshetimpactskpjtestlistw2dgCMatrixread.gwt2distspregstslshac

Dependencies:bootclassclassIntclicodacodetoolsDBIdeldire1071glueKernSmoothlatticeLearnBayeslifecyclemagrittrMASSMatrixmultcompmvtnormnlmeproxyRcpprlangs2sandwichsfspspatialregspDataspdepstringistringrsurvivalTH.dataunitsvctrswkzoo

sphet: Spatial Models with Heteroskedastic Innovations

Rendered fromsphet.Rnwusingutils::Sweaveon Dec 06 2024.

Last update: 2024-12-06
Started: 2013-11-04