Package: spate 1.7.5

Fabio Sigrist

spate: Spatio-Temporal Modeling of Large Data Using a Spectral SPDE Approach

Functionality for spatio-temporal modeling of large data sets is provided. A Gaussian process in space and time is defined through a stochastic partial differential equation (SPDE). The SPDE is solved in the spectral space, and after discretizing in time and space, a linear Gaussian state space model is obtained. When doing inference, the main computational difficulty consists in evaluating the likelihood and in sampling from the full conditional of the spectral coefficients, or equivalently, the latent space-time process. In comparison to the traditional approach of using a spatio-temporal covariance function, the spectral SPDE approach is computationally advantageous. See Sigrist, Kuensch, and Stahel (2015) <doi:10.1111/rssb.12061> for more information on the methodology. This package aims at providing tools for two different modeling approaches. First, the SPDE based spatio-temporal model can be used as a component in a customized hierarchical Bayesian model (HBM). The functions of the package then provide parameterizations of the process part of the model as well as computationally efficient algorithms needed for doing inference with the HBM. Alternatively, the adaptive MCMC algorithm implemented in the package can be used as an algorithm for doing inference without any additional modeling. The MCMC algorithm supports data that follow a Gaussian or a censored distribution with point mass at zero. Covariates can be included in the model through a regression term.

Authors:Fabio Sigrist, Hans R. Kuensch, Werner A. Stahel

spate_1.7.5.tar.gz
spate_1.7.5.tar.gz(r-4.5-noble)spate_1.7.5.tar.gz(r-4.4-noble)
spate_1.7.5.tgz(r-4.4-emscripten)spate_1.7.5.tgz(r-4.3-emscripten)
spate.pdf |spate.html
spate/json (API)

# Install 'spate' in R:
install.packages('spate', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • fftw3– Library for computing Fast Fourier Transforms
Datasets:
  • spateMCMC - 'spateMCMC' object output obtained from 'spate.mcmc'.
  • spateMLE - Maximum likelihood estimate for SPDE model with Gaussian observations.

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

fftw3

3.16 score 29 scripts 188 downloads 44 exports 2 dependencies

Last updated 1 years agofrom:1c27a8ac0e. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKDec 25 2024
R-4.5-linux-x86_64OKDec 25 2024

Exports:colsffbsffbs.spectralget.propagatorget.propagator.vecget.real.dft.matindex.complex.to.real.dftinnov.speclin.predloglikemap.obs.to.gridmatern.specmcmc.summaryPalphaPgammaPlambdaplot.spateMCMCplot.spateSimPmuxPmuypost.dist.histPrho0Prho1print.spateMCMCprint.spateSimpropagate.spectralPsigma2Ptau2Pzetareal.fftreal.fft.TSsample.four.coefspate.initspate.mcmcspate.plotspate.predictspate.simsummary.spateSimtobit.lambda.log.full.condtrace.plotTSmat.to.vectvect.to.TSmatvnormwave.numbers

Dependencies:mvtnormtruncnorm

spate Tutorial

Rendered fromspate_tutorial.Rnwusingutils::Sweaveon Dec 25 2024.

Last update: 2013-12-28
Started: 2012-11-29

Readme and manuals

Help Manual

Help pageTopics
Spatio-temporal modeling of large data with the spectral SPDE approachspate-package spate
Function that returns the color scale for 'image()'.cols
Forward Filtering Backward Sampling algorithm.ffbs
Forward Filtering Backward Sampling algorithm in the spectral space of the SPDE.ffbs.spectral
Propagator matrix G.get.propagator
Propagator matrix G in vector form.get.propagator.vec
Matrix applying the two-dimensional real Fourier transform.get.real.dft.mat
Auxilary function for the real Fourier transform.index.complex.to.real.dft
Spectrum of the innovation term epsilon.innov.spec
Linear predictor.lin.pred
Log-likelihood of the hyperparameters.loglike
Maps non-gridded data to a grid.map.obs.to.grid
Spectrum of the Matern covariance function.matern.spec
Summary function for MCMC output.mcmc.summary
Prior for direction of anisotropy in diffusion parameter alpha.Palpha
Prior for amount of anisotropy in diffusion parameter gamma.Pgamma
Prior for transformation parameter of the Tobit model.Plambda
Plot fitted spateMCMC objects.plot.spateMCMC
Plotting function for 'spateSim' objects.plot.spateSim
Prior for y-component of drift.Pmux
Prior for y-component of drift.Pmuy
Histogram of posterior distributions.post.dist.hist
Prior for range parameter rho0 of innovation epsilon.Prho0
Prior for range parameter rho1 of diffusion.Prho1
Print function for spateMCMC objects.print.spateMCMC
Print function for 'spateSim' objects.print.spateSim
Function that propagates a state (spectral coefficients).propagate.spectral
Prior for for variance parameter sigma2 of innovation epsilon. hyperparameter.Psigma2
Prior for nugget effect parameter tau2.Ptau2
Prior for damping parameter zeta.Pzeta
Fast calculation of the two-dimensional real Fourier transform.real.fft
Fast calculation of the two-dimensional real Fourier transform of a space-time field. For each time point, the spatial field is transformed.real.fft.TS
Sample from the full conditional of the Fourier coefficients.sample.four.coef
Constructor for 'spateFT' object which are used for the two-dimensional Fourier transform.spate.init
MCMC algorithm for fitting the model.spate.mcmc
Plot a spatio-temporal field.spate.plot
Obtain samples from predictive distribution in space and time.spate.predict
Simulate from the SPDE.spate.sim
'spateMCMC' object output obtained from 'spate.mcmc'.spateMCMC
Maximum likelihood estimate for SPDE model with Gaussian observations.spateMLE
Summary function for 'spateSim' objects.summary.spateSim
Full conditional for transformation parameter lambda.tobit.lambda.log.full.cond
Trace plots for MCMC output analysis.trace.plot
Converts a matrix stacked vector.TSmat.to.vect
Converts a stacked vector into matrix.vect.to.TSmat
Eucledian norm of a vectorvnorm
Wave numbers.wave.numbers