Package: sparsegl 1.1.1

Daniel J. McDonald

sparsegl: Sparse Group Lasso

Efficient implementation of sparse group lasso with optional bound constraints on the coefficients; see <doi:10.18637/jss.v110.i06>. It supports the use of a sparse design matrix as well as returning coefficient estimates in a sparse matrix. Furthermore, it correctly calculates the degrees of freedom to allow for information criteria rather than cross-validation with very large data. Finally, the interface to compiled code avoids unnecessary copies and allows for the use of long integers.

Authors:Daniel J. McDonald [aut, cre], Xiaoxuan Liang [aut], Anibal Solón Heinsfeld [aut], Aaron Cohen [aut], Yi Yang [ctb], Hui Zou [ctb], Jerome Friedman [ctb], Trevor Hastie [ctb], Rob Tibshirani [ctb], Balasubramanian Narasimhan [ctb], Kenneth Tay [ctb], Noah Simon [ctb], Junyang Qian [ctb], James Yang [ctb]

sparsegl_1.1.1.tar.gz
sparsegl_1.1.1.tar.gz(r-4.5-noble)sparsegl_1.1.1.tar.gz(r-4.4-noble)
sparsegl_1.1.1.tgz(r-4.4-emscripten)sparsegl_1.1.1.tgz(r-4.3-emscripten)
sparsegl.pdf |sparsegl.html
sparsegl/json (API)
NEWS

# Install 'sparsegl' in R:
install.packages('sparsegl', repos = 'https://cloud.r-project.org')

Bug tracker:https://github.com/dajmcdon/sparsegl/issues3 issues

Pkgdown site:https://dajmcdon.github.io

Uses libs:
  • fortran– Runtime library for GNU Fortran applications
Datasets:
  • trust_experts - Trust in scientific experts during the Covid-19 pandemic

On CRAN:

Conda:

fortran

3.48 score 1 packages 408 downloads 15 exports 40 dependencies

Last updated 7 months agofrom:9c23391c86. Checks:3 OK. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKMar 23 2025
R-4.5-linux-x86_64OKMar 23 2025
R-4.4-linux-x86_64OKMar 23 2025

Exports:%>%cv.sparseglestimate_riskgr_one_normgr_two_normgrouped_one_normgrouped_sp_normgrouped_two_normgrouped_zero_normmake_irls_warmupone_normsp_group_normsparsegltwo_normzero_norm

Dependencies:clicolorspacecpp11dotCall64dplyrfansifarvergenericsggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigpurrrR6RColorBrewerRcppRcppEigenrlangRSpectrascalesstringistringrtibbletidyrtidyselectutf8vctrsviridisLitewithr

Getting started with sparsegl

Rendered fromsparsegl.Rmdusingknitr::rmarkdownon Mar 23 2025.

Last update: 2024-08-25
Started: 2022-03-07

Citation

To cite sparsegl in publications use:

Liang X, Cohen A, Solón Heinsfeld A, Pestilli F, McDonald DJ (2024). “sparsegl: An R Package for Estimating Sparse Group Lasso.” Journal of Statistical Software, 110(6), 1–23. doi:10.18637/jss.v110.i06.

Corresponding BibTeX entry:

  @Article{,
    title = {{sparsegl}: An {R} Package for Estimating Sparse Group
      Lasso},
    author = {Xiaoxuan Liang and Aaron Cohen and Anibal {Sol{\'o}n
      Heinsfeld} and Franco Pestilli and Daniel J. McDonald},
    journal = {Journal of Statistical Software},
    year = {2024},
    volume = {110},
    number = {6},
    pages = {1--23},
    doi = {10.18637/jss.v110.i06},
  }

Readme and manuals

sparsegl sparsegl website

The goal of sparsegl is to fit regularization paths for sparse group-lasso penalized learning problems. The model is typically fit for a sequence of regularization parameters $\lambda$. Such estimators minimize

$$ -\ell(\beta | y,\ \mathbf{X}) + \lambda(1-\alpha)\sum_{g\in G} \lVert\beta_g\rVert_2 + \lambda\alpha \lVert\beta\rVert_1. $$

The main focus of this package is for the case where the loglikelihood corresponds to Gaussian or logistic regression. But we also provide the ability to fit arbitrary GLMs using stats::family() objects. Details may be found in Liang, Cohen, Sólon Heinsfeld, Pestilli, and McDonald (2024).

Installation

You can install the released version of sparsegl from CRAN with:

install.packages("sparsegl")

You can install the development version from GitHub with:

# install.packages("remotes")
remotes::install_github("dajmcdon/sparsegl")

Minimal Example

set.seed(1010)
n <- 100
p <- 200
X <- matrix(data = rnorm(n * p, mean = 0, sd = 1), nrow = n, ncol = p)
eps <- rnorm(n, mean = 0, sd = 1)
beta_star <- c(
  rep(5, 5), c(5, -5, 2, 0, 0),
  rep(-5, 5), c(2, -3, 8, 0, 0), rep(0, (p - 20))
)
y <- X %*% beta_star + eps
groups <- rep(1:(p / 5), each = 5)
fit1 <- sparsegl(X, y, group = groups)
plot(fit1, y_axis = "coef", x_axis = "penalty", add_legend = FALSE)

References

Liang, X., Cohen, A., Sólon Heinsfeld, A., Pestilli, F., and McDonald, D.J. 2024. “sparsegl: An R Package for Estimating Sparse Group Lasso.” Journal of Statistical Software 110(6), 1–23. https://doi.org/10.18637/jss.v110.i06.

Help Manual

Help pageTopics
Extract coefficients from a 'cv.sparsegl' object.coef.cv.sparsegl
Extract model coefficients from a 'sparsegl' object.coef.sparsegl
Cross-validation for a 'sparsegl' object.cv.sparsegl
Calculate information criteria.estimate_risk
Create starting values for iterative reweighted least squaresmake_irls_warmup
Plot cross-validation curves produced from a 'cv.sparsegl' object.plot.cv.sparsegl
Plot solution paths from a 'sparsegl' object.plot.sparsegl
Make predictions from a 'cv.sparsegl' object.predict.cv.sparsegl
Make predictions from a 'sparsegl' object.predict.sparsegl
Regularization paths for sparse group-lasso modelssparsegl
Trust in scientific experts during the Covid-19 pandemictrust_experts
Calculate common normsgrouped_one_norm grouped_sp_norm grouped_two_norm grouped_zero_norm gr_one_norm gr_two_norm one_norm sp_group_norm two_norm zero_norm