Package: spTDyn 2.0.3
spTDyn: Spatially Varying and Spatio-Temporal Dynamic Linear Models
Fits, spatially predicts, and temporally forecasts space-time data using Gaussian Process (GP): (1) spatially varying coefficient process models and (2) spatio-temporal dynamic linear models. Bakar et al., (2016). Bakar et al., (2015).
Authors:
spTDyn_2.0.3.tar.gz
spTDyn_2.0.3.tar.gz(r-4.5-noble)spTDyn_2.0.3.tar.gz(r-4.4-noble)
spTDyn_2.0.3.tgz(r-4.4-emscripten)
spTDyn.pdf |spTDyn.html✨
spTDyn/json (API)
# Install 'spTDyn' in R: |
install.packages('spTDyn', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 4 months agofrom:32ae4a1c71. Checks:2 OK. Indexed: no.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Jan 08 2025 |
R-4.5-linux-x86_64 | OK | Jan 08 2025 |
Exports:as.mcmc.spTDcoef.spTDconfint.spTDdecaydef.timefitted.spTDGibbsDyngridTodatainitialsObsGridDataObsGridLocplot.spTDpredict.spTDpriorsresiduals.spTDspsummary.spTDtp
Dependencies:codaextraDistrintervalslatticeRcppspspacetimespTimerxtszoo
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Spatially varying and spatio-temporal dynamic linear models | spTDyn-package spTDyn |
Choice for sampling spatial decay parameter phi. | decay |
Timer series information. | def.time |
MCMC sampling for the models. | GibbsDyn |
Initial values for the spatio-temporal models. | initials |
Combining observation and nearest grid locations and data. | gridTodata ObsGridData ObsGridLoc |
Plots for spTDyn output. | plot.spTD |
Spatial and temporal predictions for the spatio-temporal models. | predict.spTD |
Priors for the spatio-temporal models. | priors |
Defining spatially varying coefficients in the formula | sp |
Summary statistics of the parameters. | summary.spTD |
Defining dynamic time-series coefficients in the formula | tp |