Package: spBPS 0.0-4
spBPS: Bayesian Predictive Stacking for Scalable Geospatial Transfer Learning
Provides functions for Bayesian Predictive Stacking within the Bayesian transfer learning framework for geospatial artificial systems, as introduced in "Bayesian Transfer Learning for Artificially Intelligent Geospatial Systems: A Predictive Stacking Approach" (Presicce and Banerjee, 2024) <doi:10.48550/arXiv.2410.09504>. This methodology enables efficient Bayesian geostatistical modeling, utilizing predictive stacking to improve inference across spatial datasets. The core functions leverage 'C++' for high-performance computation, making the framework well-suited for large-scale spatial data analysis in parallel and distributed computing environments. Designed for scalability, it allows seamless application in computationally demanding scenarios.
Authors:
spBPS_0.0-4.tar.gz
spBPS_0.0-4.tar.gz(r-4.5-noble)spBPS_0.0-4.tar.gz(r-4.4-noble)
spBPS_0.0-4.tgz(r-4.4-emscripten)spBPS_0.0-4.tgz(r-4.3-emscripten)
spBPS.pdf |spBPS.html✨
spBPS/json (API)
# Install 'spBPS' in R: |
install.packages('spBPS', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 2 months agofrom:b1ca3f44ac. Checks:OK: 2. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Dec 25 2024 |
R-4.5-linux-x86_64 | OK | Dec 25 2024 |
Exports:arma_distbayesMvLMconjugateBPS_combineBPS_postBPS_post_MvTBPS_predBPS_pred_MvTBPS_PseudoBMABPS_weightsBPS_weights_MvTconv_optexpand_grid_cppforceSymmetry_cpppred_bayesMvLMconjugatesubset_data
Dependencies:bitbit64cliCVXRECOSolveRgmplatticeMatrixmniwosqpR6RcppRcppArmadilloRcppEigenRmpfrscs