Package: spBFA 1.3
spBFA: Spatial Bayesian Factor Analysis
Implements a spatial Bayesian non-parametric factor analysis model with inference in a Bayesian setting using Markov chain Monte Carlo (MCMC). Spatial correlation is introduced in the columns of the factor loadings matrix using a Bayesian non-parametric prior, the probit stick-breaking process. Areal spatial data is modeled using a conditional autoregressive (CAR) prior and point-referenced spatial data is treated using a Gaussian process. The response variable can be modeled as Gaussian, probit, Tobit, or Binomial (using Polya-Gamma augmentation). Temporal correlation is introduced for the latent factors through a hierarchical structure and can be specified as exponential or first-order autoregressive. Full details of the package can be found in the accompanying vignette. Furthermore, the details of the package can be found in "Bayesian Non-Parametric Factor Analysis for Longitudinal Spatial Surfaces", by Berchuck et al (2019), <arxiv:1911.04337>. The paper is in press at the journal Bayesian Analysis.
Authors:
spBFA_1.3.tar.gz
spBFA_1.3.tar.gz(r-4.5-noble)spBFA_1.3.tar.gz(r-4.4-noble)
spBFA_1.3.tgz(r-4.4-emscripten)spBFA_1.3.tgz(r-4.3-emscripten)
spBFA.pdf |spBFA.html✨
spBFA/json (API)
# Install 'spBFA' in R: |
install.packages('spBFA', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
- reg.bfa_sp - Pre-computed regression results from 'bfa_sp'
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 2 years agofrom:894b98c715. Checks:OK: 2. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 31 2024 |
R-4.5-linux-x86_64 | OK | Oct 31 2024 |
Exports:bfa_spdiagnosticsis.spBFA
Dependencies:cliexpmfansigenericsgluelatticelifecyclemagrittrMatrixmsmmvtnormpgdrawpillarpkgconfigRcppRcppArmadillorlangsurvivaltibbleutf8vctrs
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Spatial factor analysis using a Bayesian hierarchical model. | bfa_sp |
diagnostics | diagnostics |
is.spBFA | is.spBFA |
predict.spBFA | predict.spBFA |
Pre-computed regression results from 'bfa_sp' | reg.bfa_sp |
spBFA | spBFA |