Package: spBFA 1.3

Samuel I. Berchuck

spBFA: Spatial Bayesian Factor Analysis

Implements a spatial Bayesian non-parametric factor analysis model with inference in a Bayesian setting using Markov chain Monte Carlo (MCMC). Spatial correlation is introduced in the columns of the factor loadings matrix using a Bayesian non-parametric prior, the probit stick-breaking process. Areal spatial data is modeled using a conditional autoregressive (CAR) prior and point-referenced spatial data is treated using a Gaussian process. The response variable can be modeled as Gaussian, probit, Tobit, or Binomial (using Polya-Gamma augmentation). Temporal correlation is introduced for the latent factors through a hierarchical structure and can be specified as exponential or first-order autoregressive. Full details of the package can be found in the accompanying vignette. Furthermore, the details of the package can be found in "Bayesian Non-Parametric Factor Analysis for Longitudinal Spatial Surfaces", by Berchuck et al (2019), <arxiv:1911.04337>. The paper is in press at the journal Bayesian Analysis.

Authors:Samuel I. Berchuck [aut, cre]

spBFA_1.3.tar.gz
spBFA_1.3.tar.gz(r-4.5-noble)spBFA_1.3.tar.gz(r-4.4-noble)
spBFA_1.3.tgz(r-4.4-emscripten)spBFA_1.3.tgz(r-4.3-emscripten)
spBFA.pdf |spBFA.html
spBFA/json (API)

# Install 'spBFA' in R:
install.packages('spBFA', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
Datasets:
  • reg.bfa_sp - Pre-computed regression results from 'bfa_sp'

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

openblascpp

2.00 score 3 scripts 180 downloads 3 exports 21 dependencies

Last updated 2 years agofrom:894b98c715. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKDec 30 2024
R-4.5-linux-x86_64OKDec 30 2024

Exports:bfa_spdiagnosticsis.spBFA

Dependencies:cliexpmfansigenericsgluelatticelifecyclemagrittrMatrixmsmmvtnormpgdrawpillarpkgconfigRcppRcppArmadillorlangsurvivaltibbleutf8vctrs

Introduction to using R package: spBFA

Rendered fromspBFA-example.Rmdusingknitr::rmarkdownon Dec 30 2024.

Last update: 2019-10-30
Started: 2019-10-30