Package: sjPlot 2.8.17

Daniel Lüdecke

sjPlot: Data Visualization for Statistics in Social Science

Collection of plotting and table output functions for data visualization. Results of various statistical analyses (that are commonly used in social sciences) can be visualized using this package, including simple and cross tabulated frequencies, histograms, box plots, (generalized) linear models, mixed effects models, principal component analysis and correlation matrices, cluster analyses, scatter plots, stacked scales, effects plots of regression models (including interaction terms) and much more. This package supports labelled data.

Authors:Daniel Lüdecke [aut, cre], Alexander Bartel [ctb], Carsten Schwemmer [ctb], Chuck Powell [ctb], Amir Djalovski [ctb], Johannes Titz [ctb]

sjPlot_2.8.17.tar.gz
sjPlot_2.8.17.tar.gz(r-4.5-noble)sjPlot_2.8.17.tar.gz(r-4.4-noble)
sjPlot_2.8.17.tgz(r-4.4-emscripten)sjPlot_2.8.17.tgz(r-4.3-emscripten)
sjPlot.pdf |sjPlot.html
sjPlot/json (API)
NEWS

# Install 'sjPlot' in R:
install.packages('sjPlot', repos = 'https://cloud.r-project.org')

Bug tracker:https://github.com/strengejacke/sjplot/issues228 issues

Pkgdown site:https://strengejacke.github.io

Datasets:
  • efc - Sample dataset from the EUROFAMCARE project

On CRAN:

Conda:r-sjplot-2.8.17(2025-03-25)

8.26 score 5 stars 3 packages 34k downloads 133 mentions 49 exports 51 dependencies

Last updated 4 months agofrom:28d13c5fa0. Checks:3 OK. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKMar 29 2025
R-4.5-linuxOKMar 29 2025
R-4.4-linuxOKMar 29 2025

Exports:css_themedist_chisqdist_fdist_normdist_tfont_sizeget_model_datalabel_anglelegend_styleplot_frqplot_gptplot_gridplot_grpfrqplot_kfold_cvplot_likertplot_modelplot_modelsplot_residualsplot_scatterplot_stackfrqplot_xtabsave_plotscale_color_sjplotscale_fill_sjplotset_themeshow_sjplot_palssjp.aov1sjp.chi2sjp.corrsjp.polysjplotsjplot_palsjt.itemanalysissjt.xtabsjtabtab_corrtab_dftab_dfstab_fatab_itemscaletab_modeltab_pcatab_stackfrqtab_xtabtheme_538theme_blanktheme_sjplottheme_sjplot2view_df

Dependencies:bayestestRclicolorspacecpp11datawizarddplyreffectsizeevaluatefansifarvergenericsggeffectsggplot2gluegtablehighrinsightisobandknitrlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmeparametersperformancepillarpkgconfigpurrrR6RColorBrewerrlangscalessjlabelledsjmiscsjstatsstringistringrtibbletidyrtidyselectutf8vctrsviridisLitewithrxfunyaml

Black & White Figures for Print Journals

Rendered fromblackwhitefigures.Rmdusingknitr::rmarkdownon Mar 29 2025.

Last update: 2021-11-26
Started: 2017-02-06

Customize Plot Appearance

Rendered fromcustplot.Rmdusingknitr::rmarkdownon Mar 29 2025.

Last update: 2021-11-26
Started: 2017-02-06

Customizing HTML tables

Rendered fromtable_css.Rmdusingknitr::rmarkdownon Mar 29 2025.

Last update: 2020-05-24
Started: 2018-07-12

Item Analysis of a Scale or an Index

Rendered fromsjtitemanalysis.Rmdusingknitr::rmarkdownon Mar 29 2025.

Last update: 2020-05-24
Started: 2017-02-06

Plotting Estimates (Fixed Effects) of Regression Models

Rendered fromplot_model_estimates.Rmdusingknitr::rmarkdownon Mar 29 2025.

Last update: 2023-03-13
Started: 2017-10-19

Plotting Interaction Effects of Regression Models

Rendered fromplot_interactions.Rmdusingknitr::rmarkdownon Mar 29 2025.

Last update: 2023-03-13
Started: 2018-02-05

Plotting Likert Scales

Rendered fromplot_likert_scales.Rmdusingknitr::rmarkdownon Mar 29 2025.

Last update: 2023-03-13
Started: 2019-08-02

Plotting Marginal Effects of Regression Models

Rendered fromplot_marginal_effects.Rmdusingknitr::rmarkdownon Mar 29 2025.

Last update: 2023-08-17
Started: 2018-02-05

Robust Estimation of Standard Errors, Confidence Intervals and p-values

Rendered fromtab_model_robust.Rmdusingknitr::rmarkdownon Mar 29 2025.

Last update: 2022-08-07
Started: 2020-05-24

Summary of Bayesian Models as HTML Table

Rendered fromtab_bayes.Rmdusingknitr::rmarkdownon Mar 29 2025.

Last update: 2023-04-02
Started: 2018-07-12

Summary of Mixed Models as HTML Table

Rendered fromtab_mixed.Rmdusingknitr::rmarkdownon Mar 29 2025.

Last update: 2020-01-23
Started: 2018-07-12

Summary of Regression Models as HTML Table

Rendered fromtab_model_estimates.Rmdusingknitr::rmarkdownon Mar 29 2025.

Last update: 2021-07-10
Started: 2018-07-12

Citation

Lüdecke D (2024). sjPlot: Data Visualization for Statistics in Social Science. R package version 2.8.17, https://CRAN.R-project.org/package=sjPlot.

Corresponding BibTeX entry:

  @Manual{,
    title = {sjPlot: Data Visualization for Statistics in Social
      Science},
    author = {Daniel Lüdecke},
    year = {2024},
    note = {R package version 2.8.17},
    url = {https://CRAN.R-project.org/package=sjPlot},
  }

Readme and manuals

sjPlot - Data Visualization for Statistics in Social Science

Collection of plotting and table output functions for data visualization. Results of various statistical analyses (that are commonly used in social sciences) can be visualized using this package, including simple and cross tabulated frequencies, histograms, box plots, (generalized) linear models, mixed effects models, PCA and correlation matrices, cluster analyses, scatter plots, Likert scales, effects plots of interaction terms in regression models, constructing index or score variables and much more.

Installation

Latest development build

To install the latest development snapshot (see latest changes below), type the following commands into the R console:

library(devtools)
devtools::install_github("strengejacke/sjPlot")
Official, stable release

To install the latest stable release from CRAN, type the following command into the R console:

install.packages("sjPlot")

Documentation and examples

Please visit https://strengejacke.github.io/sjPlot/ for documentation and vignettes.

Citation

In case you want / have to cite my package, please use citation('sjPlot') for citation information. Since core functionality of package depends on the ggplot-package, consider citing this package as well.

DOI

Help Manual

Help pageTopics
Data Visualization for Statistics in Social SciencesjPlot-package sjPlot
Plot chi-squared distributionsdist_chisq
Plot F distributionsdist_f
Plot normal distributionsdist_norm
Plot t-distributionsdist_t
Sample dataset from the EUROFAMCARE projectefc
Plot frequencies of variablesplot_frq
Plot grouped proportional tablesplot_gpt
Arrange list of plots as gridplot_grid
Plot grouped or stacked frequenciesplot_grpfrq
Plot model fit from k-fold cross-validationplot_kfold_cv
Plot likert scales as centered stacked barsplot_likert
Plot regression modelsget_model_data plot_model
Forest plot of multiple regression modelsplot_models
Plot predicted values and their residualsplot_residuals
Plot (grouped) scatter plotsplot_scatter
Plot stacked proportional barsplot_stackfrq
Plot contingency tablesplot_xtab
Save ggplot-figure for print publicationsave_plot
Set global theme options for sjp-functionsset_theme
Plot One-Way-Anova tablessjp.aov1
Plot Pearson's Chi2-Test of multiple contingency tablessjp.chi2
Plot correlation matrixsjp.corr
Plot polynomials for (generalized) linear regressionsjp.poly
Wrapper to create plots and tables within a pipe-workflowsjplot sjtab
Modify plot appearancecss_theme font_size label_angle legend_style scale_color_sjplot scale_fill_sjplot show_sjplot_pals sjPlot-themes sjplot_pal theme_538 theme_blank theme_sjplot theme_sjplot2
Summary of correlations as HTML tabletab_corr
Print data frames as HTML table.tab_df tab_dfs
Summary of factor analysis as HTML tabletab_fa
Summary of item analysis of an item scale as HTML tablesjt.itemanalysis tab_itemscale
Print regression models as HTML tabletab_model
Summary of principal component analysis as HTML tabletab_pca
Summary of stacked frequencies as HTML tabletab_stackfrq
Summary of contingency tables as HTML tablesjt.xtab tab_xtab
View structure of labelled data framesview_df