Package: simts 0.2.2

Stéphane Guerrier

simts: Time Series Analysis Tools

A system contains easy-to-use tools as a support for time series analysis courses. In particular, it incorporates a technique called Generalized Method of Wavelet Moments (GMWM) as well as its robust implementation for fast and robust parameter estimation of time series models which is described, for example, in Guerrier et al. (2013) <doi:10.1080/01621459.2013.799920>. More details can also be found in the paper linked to via the URL below.

Authors:Stéphane Guerrier [aut, cre, cph], James Balamuta [aut, cph], Roberto Molinari [aut, cph], Justin Lee [aut], Lionel Voirol [aut], Yuming Zhang [aut], Wenchao Yang [ctb], Nathanael Claussen [ctb], Yunxiang Zhang [ctb], Christian Gunning [cph], Romain Francois [cph], Ross Ihaka [cph], R Core Team [cph]

simts_0.2.2.tar.gz
simts_0.2.2.tar.gz(r-4.5-noble)simts_0.2.2.tar.gz(r-4.4-noble)
simts_0.2.2.tgz(r-4.4-emscripten)simts_0.2.2.tgz(r-4.3-emscripten)
simts.pdf |simts.html
simts/json (API)
NEWS

# Install 'simts' in R:
install.packages('simts', repos = 'https://cloud.r-project.org')

Bug tracker:https://github.com/smac-group/simts/issues1 issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
Datasets:
  • australia - Quarterly Increase in Stocks Non-Farm Total, Australia
  • hydro - Mean Monthly Precipitation, from 1907 to 1972
  • savingrt - Personal Saving Rate

On CRAN:

Conda:

openblascpp

3.88 score 5 packages 336 downloads 1 mentions 91 exports 33 dependencies

Last updated 2 years agofrom:c5641f497a. Checks:1 OK, 2 NOTE. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKMar 23 2025
R-4.5-linux-x86_64NOTEMar 23 2025
R-4.4-linux-x86_64NOTEMar 23 2025

Exports:ARAR1ar1_to_gmARIMAARMAARMA11auto_corrbest_modelcheckcombcompare_acfconv.ar1.to.gmconv.gm.to.ar1corr_analysiscreate_imudesc.to.ts.modeldiag_boxpiercediag_ljungboxDRestimateevaluateFGNgen_ar1gen_ar1blocksgen_arimagen_armagen_arma11gen_bigen_drgen_fgngen_generic_sarimagen_gtsgen_ltsgen_lts_cppgen_ma1gen_materngen_meangen_modelgen_nswngen_powerlawgen_qngen_rwgen_sarimagen_sarmagen_singen_wnGMgm_to_ar1gmwmgmwm_master_cppgtsgts_timehasimuis.gtsis.imuis.ltsis.ts.modelis.wholeltsMMAMa_cppMa_cpp_vecMA1make_frameMAPEMATmodel_objdescmodel_process_descmodel_thetanp_boot_sd_medorderModelPLPQNRWRW2dimensionSARIMASARMAselectselect_arselect_arimaselect_armaselect_maSINtheo_acftheo_pacfunitConversionupdate_objvalueWN

Dependencies:backportsbroomclicolorspacecpp11dplyrfansifarvergenericsgluelabelinglifecyclemagrittrmunsellpillarpkgconfigpurrrR6RColorBrewerRcppRcppArmadillorlangrobcorscalesstringistringrtibbletidyrtidyselectutf8vctrsviridisLitewithr

simts Vignettes

Rendered fromvignettes.Rmdusingknitr::rmarkdownon Mar 23 2025.

Last update: 2022-09-03
Started: 2019-07-19

Citation

To cite package ‘simts’ in publications use:

Guerrier S, Balamuta J, Molinari R, Lee J, Voirol L, Zhang Y (2023). simts: Time Series Analysis Tools. R package version 0.2.2, https://CRAN.R-project.org/package=simts.

Corresponding BibTeX entry:

  @Manual{,
    title = {simts: Time Series Analysis Tools},
    author = {Stéphane Guerrier and James Balamuta and Roberto Molinari
      and Justin Lee and Lionel Voirol and Yuming Zhang},
    year = {2023},
    note = {R package version 0.2.2},
    url = {https://CRAN.R-project.org/package=simts},
  }

Readme and manuals

simts Overview simts

The Time Series Tools (simts) R package provides a series of tools to simulate, plot, estimate, select and forecast different time series models. Its original purpose was to be a support to the online textbook “Applied Time Series Analysis with R” but can obviously be used for time series analysis in general. More specifically, the package provides tools with the following features:

  • Simulation of time series from SARIMA models to various state-space models that can be expressed as latent time series processes.
  • Visualization of time series data with user specifications.
  • Specific simulation and visualization tools for latent time series models.
  • Easy-to-use functions to estimate and infer on the parameters of time series models through different methods (standard and robust).
  • Diagnostic and statistical tools to assess goodness of fit and select the best model for the data.
  • Estimating and plotting tools to deliver point forecasts and confidence intervals.

To understand the usage of the simts package, please refer to the “Vignettes” tab above.

Install Instructions

Installation

The simts package is available on both CRAN and GitHub. The CRAN version is considered stable while the GitHub version is subject to modifications/updates which may lead to installation problems or broken functions. You can install the stable version of the simts package with:

install.packages("simts")

For users who are interested in having the latest developments, the GitHub version is ideal although more dependencies are required to run a stable version of the package. Most importantly, users must have a (C++) compiler installed on their machine that is compatible with R (e.g. Clang).

# Install dependencies
install.packages(c("RcppArmadillo","devtools","knitr","rmarkdown"))

# Install the package from GitHub without Vignettes/User Guides
devtools::install_github("SMAC-Group/simts")

# Install the package with Vignettes/User Guides 
devtools::install_github("SMAC-Group/simts", build_vignettes = TRUE)

The setup to obtain the development version of simts is platform dependent.

License

The license this source code is released under is the GNU AFFERO GENERAL PUBLIC LICENSE (AGPL) v3.0. Please see the LICENSE file for full text. Otherwise, please consult TLDR Legal or GNU which will provide a synopsis of the restrictions placed upon the code.

Help Manual

Help pageTopics
Subset an IMU Object[.imu
Akaike's Information CriterionAIC.fitsimts
Create an Autoregressive P [AR(P)] ProcessAR
Definition of an Autoregressive Process of Order 1AR1
AR(1) process to WVar1_to_wv
Create an Autoregressive Integrated Moving Average (ARIMA) ProcessARIMA
Create an Autoregressive Moving Average (ARMA) ProcessARMA
ARMA process to WVarma_to_wv
Definition of an ARMA(1,1)ARMA11
ARMA(1,1) to WVarma11_to_wv
Quarterly Increase in Stocks Non-Farm Total, Australiaaustralia
Empirical ACF and PACFauto_corr
Select the Best Modelbest_model
Diagnostics on Fitted Time Series Modelcheck
Comparison of Classical and Robust Correlation Analysis Functionscompare_acf
Correlation Analysis Functionscorr_analysis
Analytic second derivative matrix for AR(1) processderiv_2nd_ar1
Analytic D matrix for ARMA(1,1) processderiv_2nd_arma11
Analytic second derivative matrix for drift processderiv_2nd_dr
Analytic second derivative for MA(1) processderiv_2nd_ma1
Analytic D matrix for AR(1) processderiv_ar1
Analytic D matrix for ARMA(1,1) processderiv_arma11
Analytic D matrix for Drift (DR) Processderiv_dr
Analytic D matrix for MA(1) processderiv_ma1
Analytic D matrix for Quantization Noise (QN) Processderiv_qn
Analytic D matrix Random Walk (RW) Processderiv_rw
Analytic D Matrix for a Gaussian White Noise (WN) Processderiv_wn
Analytic D matrix of Processesderivative_first_matrix
Box-Piercediag_boxpierce
Ljung-Boxdiag_ljungbox
Diagnostic Plot of Residualsdiag_plot
Portmanteau Testsdiag_portmanteau_
Create an Drift (DR) ProcessDR
Drift to WVdr_to_wv
Fit a Time Series Model to Dataestimate
Evalute a time series or a list of time series modelsevaluate
Definition of a Fractional Gaussian Noise (FGN) ProcessFGN
Generate AR(1) Block Processgen_ar1blocks
Generate Bias-Instability Processgen_bi
Simulate a simts TS object using a theoretical modelgen_gts
Generate a Latent Time Series Object Based on a Modelgen_lts
Generate Non-Stationary White Noise Processgen_nswn
Create a Gauss-Markov (GM) ProcessGM
Generalized Method of Wavelet Moments (GMWM)gmwm
GMWM for (Robust) Inertial Measurement Units (IMUs)gmwm_imu
Create a simts TS object using time series datagts
Mean Monthly Precipitation, from 1907 to 1972hydro
Create an IMU Objectimu
Pulls the IMU time from the IMU objectimu_time
Is simts Objectis.gts is.imu is.lts is.ts.model
Generate a Latent Time Series Object from Datalts
Definition of a Mean deterministic vector returned by the matrix by vector product of matrix X and vector betaM
Create an Moving Average Q [MA(Q)] ProcessMA
Definition of an Moving Average Process of Order 1MA1
Moving Average Order 1 (MA(1)) to WVma1_to_wv
Default utility function for various plots titlesmake_frame
Median Absolute Prediction ErrorMAPE
Definition of a Matérn ProcessMAT
Bootstrap standard error for the mediannp_boot_sd_med
Plot Time Series Forecast Functionplot_pred
Plot the GMWM with the Wavelet Varianceplot.gmwm
Plot Partial Auto-Covariance and Correlation Functionsplot.PACF
Plot Auto-Covariance and Correlation Functionsplot.simtsACF
Definition of a Power Law ProcessPLP
Time Series Predictionpredict.fitsimts
Predict future points in the time series using the solution of the Generalized Method of Wavelet Momentspredict.gmwm
Create an Quantisation Noise (QN) ProcessQN
Quantisation Noise (QN) to WVqn_to_wv
Read an IMU Binary File into Rread.imu
Plot the Distribution of (Standardized) Residualsresid_plot
GMWM for Robust/Classical Comparisonrgmwm
Truncated Normal Distribution Sampling Algorithmrtruncated_normal
Create an Random Walk (RW) ProcessRW
Random Walk to WVrw_to_wv
Function to Compute Direction Random Walk MovesRW2dimension
Create a Seasonal Autoregressive Integrated Moving Average (SARIMA) ProcessSARIMA
Create a Seasonal Autoregressive Moving Average (SARMA) ProcessSARMA
Personal Saving Ratesavingrt
Time Series Model Selectionselect
Run Model Selection Criteria on ARIMA Modelsselect_ar select_arima select_arma select_ma
Basic Diagnostic Plot of Residualssimple_diag_plot
Simplify and print SARIMA modelsimplified_print_SARIMA
Definition of a Sinusoidal (SIN) ProcessSIN
Summary of fitsimts objectsummary.fitsimts
Summary of GMWM objectsummary.gmwm
Theoretical Autocorrelation (ACF) of an ARMA processtheo_acf
Theoretical Partial Autocorrelation (PACF) of an ARMA processtheo_pacf
Update (Robust) GMWM object for IMU or SSMupdate.gmwm
Update Object Attributeupdate.gts update.imu update.lts
Obtain the value of an object's propertiesvalue value.imu
Create an White Noise (WN) ProcessWN
Gaussian White Noise to WVwn_to_wv