Package: simcdm 0.1.2
simcdm: Simulate Cognitive Diagnostic Model ('CDM') Data
Provides efficient R and 'C++' routines to simulate cognitive diagnostic model data for Deterministic Input, Noisy "And" Gate ('DINA') and reduced Reparameterized Unified Model ('rRUM') from Culpepper and Hudson (2017) <doi:10.1177/0146621617707511>, Culpepper (2015) <doi:10.3102/1076998615595403>, and de la Torre (2009) <doi:10.3102/1076998607309474>.
Authors:
simcdm_0.1.2.tar.gz
simcdm_0.1.2.tar.gz(r-4.5-noble)simcdm_0.1.2.tar.gz(r-4.4-noble)
simcdm_0.1.2.tgz(r-4.4-emscripten)simcdm_0.1.2.tgz(r-4.3-emscripten)
simcdm.pdf |simcdm.html✨
simcdm/json (API)
NEWS
# Install 'simcdm' in R: |
install.packages('simcdm', repos = 'https://cloud.r-project.org') |
Bug tracker:https://github.com/tmsalab/simcdm/issues
Pkgdown site:https://tmsalab.github.io
Last updated 1 years agofrom:026450022d. Checks:2 OK. Indexed: no.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Feb 22 2025 |
R-4.5-linux-x86_64 | OK | Feb 22 2025 |
Exports:attribute_bijectionattribute_classesattribute_inv_bijectionsim_dina_attributessim_dina_classsim_dina_itemssim_eta_matrixsim_q_matrixsim_rrum_itemssim_subject_attributes
Dependencies:RcppRcppArmadillo
Citation
To cite the 'simcdm' package in publications use:
Balamuta, J. J. (2021). Bayesian estimation of restricted latent class models: Extending priors, link functions, and structural models. University of Illinois Urbana-Champaign.
Balamuta, J. J., Culpepper, S. A., and Hudson A. (2019) simcdm: Simulate Cognitive Diagnostic Model (CDM) Data. URL https://cran.r-project.org/package=simcdm.
Corresponding BibTeX entries:
@PhdThesis{, title = {Bayesian estimation of restricted latent class models: Extending priors, link functions, and structural models}, author = {James Joseph Balamuta}, school = {University of Illinois Urbana-Champaign}, doi = {10.1080/00273171.2021.1985949}, year = {2021}, }
@Manual{, title = {{simcdm: Simulate Cognitive Diagnostic Model (CDM) Data}}, author = {James Joseph Balamuta and Steven Andrew Culpepper and Aaron Hudson}, year = {2019}, }
Readme and manuals
simcdm
The goal of simcdm
is to provide flexible ways to simulate data under
cognitive diagnostic models.
Installation
You can install simcdm
from GitHub with:
# install.packages("remotes")
remotes::install_github("tmsalab/simcdm")
Usage
To use simcdm
, load the package using:
library("simcdm")
Overview
There are four distinct sets of functions within the package:
- Attributes:
attribute_classes()
,attribute_bijection()
,attribute_inv_bijection()
, andsim_subject_attributes()
. - Matrix:
sim_q_matrix()
andsim_eta_matrix()
- Deterministic Input, Noisy And Gate (DINA):
sim_dina_items()
andsim_dina_attributes()
- reduced Reparameterized Unified Model (rRUM):
sim_rrum_items()
Functions that use random numbers to simulate values are named with the
prefix of sim_*()
. This is done to allow for functions to be quickly
identified and used through autocomplete inside of the RStudio
IDE or VS
Code. At a later time, the
attribute_*()
will likely be moved to a different package.
For more details, please see the package vignettes:
Authors
James Joseph Balamuta and Steven Andrew Culpepper with contributions from Aaron Hudson.
Citing the simcdm package
To ensure future development of the package, please cite simcdm
package if used during the analysis or simulations. Citation information
for the package may be acquired by using in R:
citation("simcdm")
License
GPL (>= 2)
Help Manual
Help page | Topics |
---|---|
simcdm: Simulate Cognitive Diagnostic Model ('CDM') Data | simcdm-package simcdm |
Constructs Unique Attribute Pattern Map | attribute_bijection |
Simulate all the Latent Attribute Profile \mathbf{alpha}_c in Matrix form | attribute_classes |
Perform an Inverse Bijection of an Integer to Attribute Pattern | attribute_inv_bijection |
Simulate a DINA Model's eta Matrix | sim_dina_attributes |
Simulate Binary Responses for a DINA Model | sim_dina_class |
Simulation Responses from the DINA model | sim_dina_items |
Generate ideal response eta Matrix | sim_eta_matrix |
Generate a Random Identifiable Q Matrix | sim_q_matrix |
Generate data from the rRUM | sim_rrum_items |
Simulate Subject Latent Attribute Profiles \mathbf{alpha}_c | sim_subject_attributes |