Package: sgs 0.3.2
sgs: Sparse-Group SLOPE: Adaptive Bi-Level Selection with FDR Control
Implementation of Sparse-group SLOPE (SGS) (Feser and Evangelou (2023) <doi:10.48550/arXiv.2305.09467>) models. Linear and logistic regression models are supported, both of which can be fit using k-fold cross-validation. Dense and sparse input matrices are supported. In addition, a general Adaptive Three Operator Splitting (ATOS) (Pedregosa and Gidel (2018) <doi:10.48550/arXiv.1804.02339>) implementation is provided. Group SLOPE (gSLOPE) (Brzyski et al. (2019) <doi:10.1080/01621459.2017.1411269>) and group-based OSCAR models (Feser and Evangelou (2024) <doi:10.48550/arXiv.2405.15357>) are also implemented. All models are available with strong screening rules (Feser and Evangelou (2024) <doi:10.48550/arXiv.2405.15357>) for computational speed-up.
Authors:
sgs_0.3.2.tar.gz
sgs_0.3.2.tar.gz(r-4.5-noble)sgs_0.3.2.tar.gz(r-4.4-noble)
sgs_0.3.2.tgz(r-4.4-emscripten)sgs_0.3.2.tgz(r-4.3-emscripten)
sgs.pdf |sgs.html✨
sgs/json (API)
# Install 'sgs' in R: |
install.packages('sgs', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/ff1201/sgs/issues
Last updated 1 months agofrom:3fd9382b66. Checks:OK: 2. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Dec 28 2024 |
R-4.5-linux-x86_64 | OK | Dec 28 2024 |
Exports:arma_mvarma_sparseas_sgsatosfit_goscarfit_goscar_cvfit_gslopefit_gslope_cvfit_sgofit_sgo_cvfit_sgsfit_sgs_cvgen_pensgen_toy_datascaled_sgs
Dependencies:caretclasscliclockcodetoolscolorspacecpp11data.tablediagramdigestdplyre1071fansifarverforeachfuturefuture.applygenericsggplot2globalsgluegowergtablehardhatipredisobanditeratorsKernSmoothlabelinglatticelavalifecyclelistenvlubridatemagrittrMASSMatrixmgcvModelMetricsmunsellnlmennetnumDerivparallellypillarpkgconfigplyrpROCprodlimprogressrproxypurrrR6RColorBrewerRcppRcppArmadillorecipesreshape2RlabrlangrpartscalesshapeSLOPESQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetzdbutf8vctrsviridisLitewithr