Package: sgdGMF 1.0
sgdGMF: Estimation of Generalized Matrix Factorization Models via Stochastic Gradient Descent
Efficient framework to estimate high-dimensional generalized matrix factorization models using penalized maximum likelihood under a dispersion exponential family specification. Either deterministic and stochastic methods are implemented for the numerical maximization. In particular, the package implements the stochastic gradient descent algorithm with a block-wise mini-batch strategy to speed up the computations and an efficient adaptive learning rate schedule to stabilize the convergence. All the theoretical details can be found in Castiglione et al. (2024, <doi:10.48550/arXiv.2412.20509>). Other methods considered for the optimization are the alternated iterative re-weighted least squares and the quasi-Newton method with diagonal approximation of the Fisher information matrix discussed in Kidzinski et al. (2022, <http://jmlr.org/papers/v23/20-1104.html>).
Authors:
sgdGMF_1.0.tar.gz
sgdGMF_1.0.tar.gz(r-4.5-noble)sgdGMF_1.0.tar.gz(r-4.4-noble)
sgdGMF_1.0.tgz(r-4.4-emscripten)sgdGMF_1.0.tgz(r-4.3-emscripten)
sgdGMF.pdf |sgdGMF.html✨
sgdGMF/json (API)
# Install 'sgdGMF' in R: |
install.packages('sgdGMF', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/cristiancastiglione/sgdgmf/issues
Last updated 7 days agofrom:1d10f9e19e. Checks:2 OK. Indexed: no.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Feb 13 2025 |
R-4.5-linux-x86_64 | OK | Feb 13 2025 |
Exports:refitset.control.airwlsset.control.algset.control.block.sgdset.control.coord.sgdset.control.cvset.control.initset.control.newtonsgdgmf.cvsgdgmf.fitsgdgmf.initsgdgmf.ranksim.gmf.datasimulate
Dependencies:abindbackportsbootbroomcarcarDataclicodetoolscolorspacecorrplotcowplotcpp11DerivdoBydoParalleldplyrfansifarverforeachFormulagenericsggplot2ggpubrggrepelggsciggsignifgluegridExtragtableisobanditeratorslabelinglatticelifecyclelme4magrittrMASSMatrixMatrixModelsmgcvmicrobenchmarkminqamodelrmunsellnlmenloptrnnetnumDerivpbkrtestpillarpkgconfigplyrpolynompurrrquantregR6rbibutilsRColorBrewerRcppRcppArmadilloRcppEigenRdpackreformulasreshape2rlangRSpectrarstatixscalesSparseMstringistringrSuppDistssurvivaltibbletidyrtidyselectutf8vctrsviridisLitewithr
Algorithm comparison
Rendered fromalgorithms.Rmd
usingknitr::rmarkdown
on Feb 13 2025.Last update: 2025-02-13
Started: 2025-02-13
Initialization algorithms
Rendered frominitialization.Rmd
usingknitr::rmarkdown
on Feb 13 2025.Last update: 2025-02-13
Started: 2025-02-13
Introduction to the sgdGMF package
Rendered fromintroduction.Rmd
usingknitr::rmarkdown
on Feb 13 2025.Last update: 2025-02-13
Started: 2025-02-13
Analysis of the residuals
Rendered fromresiduals.Rmd
usingknitr::rmarkdown
on Feb 13 2025.Last update: 2025-02-13
Started: 2025-02-13