Package: seqHMM 1.2.6
seqHMM: Mixture Hidden Markov Models for Social Sequence Data and Other Multivariate, Multichannel Categorical Time Series
Designed for fitting hidden (latent) Markov models and mixture hidden Markov models for social sequence data and other categorical time series. Also some more restricted versions of these type of models are available: Markov models, mixture Markov models, and latent class models. The package supports models for one or multiple subjects with one or multiple parallel sequences (channels). External covariates can be added to explain cluster membership in mixture models. The package provides functions for evaluating and comparing models, as well as functions for visualizing of multichannel sequence data and hidden Markov models. Models are estimated using maximum likelihood via the EM algorithm and/or direct numerical maximization with analytical gradients. All main algorithms are written in C++ with support for parallel computation. Documentation is available via several vignettes in this page, and the paper by Helske and Helske (2019, <doi:10.18637/jss.v088.i03>).
Authors:
seqHMM_1.2.6.tar.gz
seqHMM_1.2.6.tar.gz(r-4.5-noble)seqHMM_1.2.6.tar.gz(r-4.4-noble)
seqHMM_1.2.6.tgz(r-4.4-emscripten)seqHMM_1.2.6.tgz(r-4.3-emscripten)
seqHMM.pdf |seqHMM.html✨
seqHMM/json (API)
NEWS
# Install 'seqHMM' in R: |
install.packages('seqHMM', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/helske/seqhmm/issues
- biofam3c - Three-channel biofam data
- colorpalette - Color palettes
- hmm_biofam - Hidden Markov model for the biofam data
- hmm_mvad - Hidden Markov model for the mvad data
- mhmm_biofam - Mixture hidden Markov model for the biofam data
- mhmm_mvad - Mixture hidden Markov model for the mvad data
Last updated 1 years agofrom:6e6f92383f. Checks:OK: 1 NOTE: 1. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Dec 10 2024 |
R-4.5-linux-x86_64 | NOTE | Dec 10 2024 |
Exports:alphabetbuild_hmmbuild_lcmbuild_mhmmbuild_mmbuild_mmmcluster_namescluster_names<-estimate_coeffit_hmmfit_mhmmfit_modelforward_backwardgridplothidden_pathsmc_to_scmc_to_sc_datamssplotplot_colorsposterior_probsseparate_mhmmseqdefseqstatfsimulate_emission_probssimulate_hmmsimulate_initial_probssimulate_mhmmsimulate_transition_probssspssplotstate_namesstate_names<-trim_hmmtrim_model
Dependencies:bootcliclustercolorspacecpp11gluegridBaseigraphlatticelifecyclemagrittrMASSMatrixmgcvnlmenloptrnumDerivpermutepkgconfigRColorBrewerRcppRcppArmadillorlangTraMineRvctrsvegan
Examples and tips for estimating Markovian models with seqHMM
Rendered fromseqHMM_estimation.Rnw
usingknitr::knitr
on Dec 10 2024.Last update: 2022-05-25
Started: 2017-04-04
Mixture Hidden Markov Models for Sequence Data: the seqHMM Package in R
Rendered fromseqHMM.Rnw
usingknitr::knitr
on Dec 10 2024.Last update: 2023-06-12
Started: 2015-12-19
The main algorithms used in the seqHMM package
Rendered fromseqHMM_algorithms.Rnw
usingknitr::knitr
on Dec 10 2024.Last update: 2022-05-25
Started: 2017-04-04
Visualization tools in the seqHMM package
Rendered fromseqHMM_visualization.Rnw
usingknitr::knitr
on Dec 10 2024.Last update: 2023-06-12
Started: 2017-04-04