Package: samurais 0.1.0
samurais: Statistical Models for the Unsupervised Segmentation of Time-Series ('SaMUraiS')
Provides a variety of original and flexible user-friendly statistical latent variable models and unsupervised learning algorithms to segment and represent time-series data (univariate or multivariate), and more generally, longitudinal data, which include regime changes. 'samurais' is built upon the following packages, each of them is an autonomous time-series segmentation approach: Regression with Hidden Logistic Process ('RHLP'), Hidden Markov Model Regression ('HMMR'), Multivariate 'RHLP' ('MRHLP'), Multivariate 'HMMR' ('MHMMR'), Piece-Wise regression ('PWR'). For the advantages/differences of each of them, the user is referred to our mentioned paper references.
Authors:
samurais_0.1.0.tar.gz
samurais_0.1.0.tar.gz(r-4.5-noble)samurais_0.1.0.tar.gz(r-4.4-noble)
samurais_0.1.0.tgz(r-4.4-emscripten)samurais_0.1.0.tgz(r-4.3-emscripten)
samurais.pdf |samurais.html✨
samurais/json (API)
# Install 'samurais' in R: |
install.packages('samurais', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/fchamroukhi/samurais/issues
- multivrealdataset - Time series representing the three acceleration components recorded over time with body mounted accelerometers during the activity of a given person.
- multivtoydataset - A simulated non-stationary multidimensional time series with regime changes.
- univrealdataset - Time series representing the electrical power consumption during a railway switch operation
- univtoydataset - A simulated non-stationary time series with regime changes.
Last updated 5 years agofrom:2eae2daafb. Checks:OK: 1 NOTE: 1. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 01 2024 |
R-4.5-linux-x86_64 | NOTE | Nov 01 2024 |
Exports:emHMMRemMHMMRemMRHLPemRHLPfitPWRFisherselectHMMRselectMHMMRselectMRHLPselectRHLP
Dependencies:MASSRcppRcppArmadillo
A-quick-tour-of-HMMR
Rendered fromA-quick-tour-of-HMMR.Rmd
usingknitr::rmarkdown
on Nov 01 2024.Last update: 2019-07-28
Started: 2019-07-28
A-quick-tour-of-MHMMR
Rendered fromA-quick-tour-of-MHMMR.Rmd
usingknitr::rmarkdown
on Nov 01 2024.Last update: 2019-07-28
Started: 2019-07-28
A-quick-tour-of-MRHLP
Rendered fromA-quick-tour-of-MRHLP.Rmd
usingknitr::rmarkdown
on Nov 01 2024.Last update: 2019-07-28
Started: 2019-07-28
A-quick-tour-of-PWR
Rendered fromA-quick-tour-of-PWR.Rmd
usingknitr::rmarkdown
on Nov 01 2024.Last update: 2019-07-28
Started: 2019-07-28
A-quick-tour-of-RHLP
Rendered fromA-quick-tour-of-RHLP.Rmd
usingknitr::rmarkdown
on Nov 01 2024.Last update: 2019-07-28
Started: 2019-07-28
Model-selection-HMMR
Rendered fromModel-selection-HMMR.Rmd
usingknitr::rmarkdown
on Nov 01 2024.Last update: 2019-07-28
Started: 2019-07-28
Model-selection-MHMMR
Rendered fromModel-selection-MHMMR.Rmd
usingknitr::rmarkdown
on Nov 01 2024.Last update: 2019-07-28
Started: 2019-07-28
Model-selection-MRHLP
Rendered fromModel-selection-MRHLP.Rmd
usingknitr::rmarkdown
on Nov 01 2024.Last update: 2019-07-28
Started: 2019-07-28
Model-selection-RHLP
Rendered fromModel-selection-RHLP.Rmd
usingknitr::rmarkdown
on Nov 01 2024.Last update: 2019-07-28
Started: 2019-07-28