Package: saeHB.panel 0.1.1
saeHB.panel: Small Area Estimation using Hierarchical Bayesian Method for Rao Yu Model
We designed this package to provide several functions for area level of small area estimation using hierarchical Bayesian (HB) method. This package provides model using panel data for variable interest.This package also provides a dataset produced by a data generation. The 'rjags' package is employed to obtain parameter estimates. Model-based estimators involves the HB estimators which include the mean and the variation of mean. For the reference, see Rao and Molina (2015).
Authors:
saeHB.panel_0.1.1.tar.gz
saeHB.panel_0.1.1.tar.gz(r-4.5-noble)saeHB.panel_0.1.1.tar.gz(r-4.4-noble)
saeHB.panel_0.1.1.tgz(r-4.4-emscripten)saeHB.panel_0.1.1.tgz(r-4.3-emscripten)
saeHB.panel.pdf |saeHB.panel.html✨
saeHB.panel/json (API)
# Install 'saeHB.panel' in R: |
install.packages('saeHB.panel', repos = 'https://cloud.r-project.org') |
Bug tracker:https://github.com/veliatrimarliana/saehb.panel/issues0 issues
- dataAr1 - Sample Data for Small Area Estimation using Hierarchical Bayesian Method for Rao Yu Model
- dataAr1Ns - Sample Data for Small Area Estimation using Hierarchical Bayesian Method for Rao Yu Model with Non Sampled Area
- dataPanel - Sample Data for Small Area Estimation using Hierarchical Bayesian Method for Rao Yu Model when 'rho = 0'
- dataPanelNs - Sample Data for Small Area Estimation using Hierarchical Bayesian Method for Rao Yu Model when 'rho = 0' with Non Sampled Area
Last updated 3 years agofrom:70a7b90b0f. Checks:3 OK. Indexed: no.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 17 2025 |
R-4.5-linux | OK | Mar 17 2025 |
R-4.4-linux | OK | Mar 17 2025 |
Dependencies:clicodagluelatticelifecyclemagrittrrjagsrlangstringistringrvctrs
Citation
To cite package ‘saeHB.panel’ in publications use:
Marliana VT, Ubaidillah A (2022). saeHB.panel: Small Area Estimation using Hierarchical Bayesian Method for Rao Yu Model. R package version 0.1.1, https://CRAN.R-project.org/package=saeHB.panel.
ATTENTION: This citation information has been auto-generated from the package DESCRIPTION file and may need manual editing, see ‘help("citation")’.
Corresponding BibTeX entry:
@Manual{, title = {saeHB.panel: Small Area Estimation using Hierarchical Bayesian Method for Rao Yu Model}, author = {Velia Tri Marliana and Azka Ubaidillah}, year = {2022}, note = {R package version 0.1.1}, url = {https://CRAN.R-project.org/package=saeHB.panel}, }
Readme and manuals
saeHB.panel
We designed this package to provide several functions for area level of small area estimation using hierarchical Bayesian (HB) method. This package provides model using Rao-Yu Model for variable interest.This package also provides a dataset produced by a data generation. The “rjags” package is employed to obtain parameter estimates. Model-based estimators involves the HB estimators which include the mean and the variation of mean. For the reference, see Rao and Molina (2015) and Torabi and Shokoohi (2012).
Author
Velia Tri Marliana, Azka Ubaidillah
Maintaner
Velia Tri Marliana 221810642@stis.ac.id
Function
-
RaoYuAr1()
This function gives estimation of y using Hierarchical Bayesian under Rao Yu Model -
Panel()
This function gives estimation of y using Hierarchical Bayesian under Rao Yu Model when rho = 0
Installation
You can install the development version of saeHB.panel from GitHub with:
# install.packages("devtools")
devtools::install_github("Veliatrimarliana/saeHB.panel")
Example
This is a basic example which shows you how to solve a common problem:
library(saeHB.panel)
data(dataAr1)
formula = ydi ~ xdi1 + xdi2
area = max(dataAr1[, "area"])
period = max(dataAr1[,"period"])
vardir = dataAr1[,4]
result <- Raoyu.Ar1(formula, area, period, vardir = vardir, data = dataAr1)
Extract area mean estimation
result$Est
Extract coefficient estimation
result$coefficient
Extract area random effect variance
result$refVar
##References * Rao, J.N.K & Molina. (2015). Small Area Estimation 2nd Edition. New York: John Wiley and Sons, Inc. * Torabi, M., & Shokoohi, F. (2012). Likelihood inference in small area estimation by combining time-series and cross-sectional data. Journal of Multivariate Analysis, 111, 213–221. https://doi.org/10.1016/j.jmva.2012.05.016