Package: saeHB.ME.beta 1.1.0

Ratih Rodliyah

saeHB.ME.beta: SAE with Measurement Error using HB under Beta Distribution

Implementation of Small Area Estimation (SAE) using Hierarchical Bayesian (HB) Method when auxiliary variable measured with error under Beta Distribution. The 'rjags' package is employed to obtain parameter estimates. For the references, see J.N.K & Molina (2015) <doi:10.1002/9781118735855>, Ybarra and Sharon (2008) <doi:10.1093/biomet/asn048>, and Ntzoufras (2009, ISBN-10: 1118210352).

Authors:Azka Ubaidillah [aut], Ratih Rodliyah [aut, cre]

saeHB.ME.beta_1.1.0.tar.gz
saeHB.ME.beta_1.1.0.tar.gz(r-4.5-noble)saeHB.ME.beta_1.1.0.tar.gz(r-4.4-noble)
saeHB.ME.beta_1.1.0.tgz(r-4.4-emscripten)saeHB.ME.beta_1.1.0.tgz(r-4.3-emscripten)
saeHB.ME.beta.pdf |saeHB.ME.beta.html
saeHB.ME.beta/json (API)
NEWS

# Install 'saeHB.ME.beta' in R:
install.packages('saeHB.ME.beta', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/ratihrodliyah/saehb.me.beta/issues

Uses libs:
  • jags– Just Another Gibbs Sampler for Bayesian MCMC
  • c++– GNU Standard C++ Library v3
Datasets:
  • dataHBMEbeta - Sample Data for Small Area Estimation with Measurement Error using Hierarchical Bayesian Method under Beta Distribution
  • dataHBMEbetaNS - Sample Data for Small Area Estimation with Measurement Error using Hierarchical Bayesian Method under Beta Distribution with Non-sampled Area

2.70 score 3 scripts 219 downloads 1 exports 11 dependencies

Last updated 1 years agofrom:3d99809fdc. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKNov 24 2024
R-4.5-linuxOKNov 24 2024

Exports:meHBbeta

Dependencies:clicodagluelatticelifecyclemagrittrrjagsrlangstringistringrvctrs

An Aplication to SAE HB ME under Beta Distribution On Sample Data

Rendered fromME.beta.Rmdusingknitr::rmarkdownon Nov 24 2024.

Last update: 2023-03-10
Started: 2023-03-10