Package: rpf 1.0.14

Joshua Pritikin

rpf: Response Probability Functions

Factor out logic and math common to Item Factor Analysis fitting, diagnostics, and analysis. It is envisioned as core support code suitable for more specialized IRT packages to build upon. Complete access to optimized C functions are made available with R_RegisterCCallable(). This software is described in Pritikin & Falk (2020) <doi:10.1177/0146621620929431>.

Authors:Joshua Pritikin [cre, aut], Jonathan Weeks [ctb], Li Cai [ctb], Carrie Houts [ctb], Phil Chalmers [ctb], Michael D. Hunter [ctb], Carl F. Falk [ctb]

rpf_1.0.14.tar.gz
rpf_1.0.14.tar.gz(r-4.5-noble)rpf_1.0.14.tar.gz(r-4.4-noble)
rpf_1.0.14.tgz(r-4.4-emscripten)rpf_1.0.14.tgz(r-4.3-emscripten)
rpf.pdf |rpf.html
rpf/json (API)

# Install 'rpf' in R:
install.packages('rpf', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/jpritikin/rpf/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library
Datasets:
  • LSAT6 - Description of LSAT6 data
  • LSAT7 - Description of LSAT7 data
  • kct.items - Knox Cube Test dataset
  • kct.people - Knox Cube Test dataset
  • sfif - Liking for Science dataset
  • sfpf - Liking for Science dataset
  • sfsf - Liking for Science dataset
  • sfxf - Liking for Science dataset

cppopenmp

7.92 score 51 packages 182 scripts 20k downloads 57 exports 7 dependencies

Last updated 1 years agofrom:d78867d801. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKDec 16 2024
R-4.5-linux-x86_64OKDec 16 2024

Exports:as.IFAgroupbestToOmitchen.thissen.1997ChenThissen1997collapseCategoricalCellscompressDataFramecrosstabTestEAPscoresexpandDataFramefromFactorLoadingfromFactorThresholditemOutcomeBySumScorelogitmultinomialFitobservedSumScoreomitItemsomitMostMissingorderCompletelyordinal.gammaptw2011.gof.testread.flexmirtrpf.1dim.fitrpf.1dim.momentrpf.1dim.residualrpf.1dim.stdresidualrpf.dLLrpf.drmrpf.dThetarpf.gpcmprpf.grmrpf.grmprpf.id_ofrpf.inforpf.lmprpf.logprobrpf.mcmrpf.mean.inforpf.mean.info1rpf.modifyrpf.nrmrpf.numParamrpf.numSpecrpf.ogiverpf.paramInforpf.probrpf.rescalerpf.rparamrpf.sampleSitemFitSitemFit1stripDatasumScoreEAPsumScoreEAPTesttabulateRowstoFactorLoadingtoFactorThresholdwrite.flexmirt

Dependencies:cligluelifecyclemvtnormRcppRcppEigenrlang

Basic 1 dimensional plots (HTML)

Rendered fromflexmirt-plots.Rmdusingknitr::knitron Dec 16 2024.

Last update: 2018-05-07
Started: 2014-06-30

Custom Item Models (HTML)

Rendered fromcustomitem.Rmdusingknitr::knitron Dec 16 2024.

Last update: 2020-02-19
Started: 2015-12-16

Item Factor Analysis diagnostics (HTML)

Rendered fromdiagnostics.Rmdusingknitr::knitron Dec 16 2024.

Last update: 2014-07-26
Started: 2014-06-30

Readme and manuals

Help Manual

Help pageTopics
rpf - Response Probability Functionsrpf-package An introduction
Convert an OpenMx MxModel object into an IFA groupas.IFAgroup
Identify the columns with most missing databestToOmit
Computes local dependence indices for all pairs of itemschen.thissen.1997 ChenThissen1997
The base class for 1 dimensional response probability functions.Class rpf.1dim rpf.1dim-class
Unidimensional dichotomous item models (1PL, 2PL, and 3PL).Class rpf.1dim.drm rpf.1dim.drm-class
Unidimensional generalized partial credit monotonic polynomial.Class rpf.1dim.gpcmp rpf.1dim.gpcmp-class
The base class for 1 dimensional graded response probability functions.Class rpf.1dim.graded rpf.1dim.graded-class
The unidimensional graded response item model.Class rpf.1dim.grm rpf.1dim.grm-class
Unidimensional graded response monotonic polynomial.Class rpf.1dim.grmp rpf.1dim.grmp-class
Unidimensional logistic function of a monotonic polynomial.Class rpf.1dim.lmp rpf.1dim.lmp-class
The base class for response probability functions.$,rpf.base-method $<-,rpf.base-method Class rpf.base rpf.base-class
The base class for multi-dimensional response probability functions.Class rpf.mdim rpf.mdim-class
Multidimensional dichotomous item models (M1PL, M2PL, and M3PL).Class rpf.mdim.drm rpf.mdim.drm-class
The base class for multi-dimensional graded response probability functions.Class rpf.mdim.graded rpf.mdim.graded-class
The multidimensional graded response item model.Class rpf.mdim.grm rpf.mdim.grm-class
The multiple-choice response item model (both unidimensional and multidimensional models have the same parameterization).Class rpf.mdim.mcm rpf.mdim.mcm-class
The nominal response item model (both unidimensional and multidimensional models have the same parameterization).Class rpf.mdim.nrm rpf.mdim.nrm-class
Collapse small sample size categorical frequency countscollapseCategoricalCells
Compress a data frame into unique rows and frequenciescompressDataFrame
Monte-Carlo test for cross-tabulation tablescrosstabTest
Compute Expected A Posteriori (EAP) scoresEAPscores
Expand summary table of patterns and frequenciesexpandDataFrame
Convert factor loadings to response function slopesfromFactorLoading
Convert factor thresholds to response function interceptsfromFactorThreshold
Produce an item outcome by observed sum-score tableitemOutcomeBySumScore
Knox Cube Test datasetkct kct.items kct.people
Transform from [0,1] to the realslogit
Description of LSAT6 dataLSAT6
Description of LSAT7 dataLSAT7
Multinomial fit testmultinomialFit
Compute the observed sum-scoreobservedSumScore
Omit the given itemsomitItems
Omit items with the most missing dataomitMostMissing
Order a data.frame by missingness and all columnsorderCompletely
Compute the ordinal gamma association statisticordinal.gamma
Compute the P value that the observed and expected tables come from the same distributionptw2011.gof.test
Read a flexMIRT PRM fileread.flexmirt
Calculate item and person Rasch fit statisticsrpf.1dim.fit
Calculate cell central momentsrpf.1dim.moment
Calculate residualsrpf.1dim.residual
Calculate standardized residualsrpf.1dim.stdresidual
Item parameter derivativesrpf.dLL rpf.dLL,rpf.base,numeric,NULL,numeric-method rpf.dLL,rpf.base,numeric,numeric,numeric-method _rpf_dLL
Create a dichotomous response modelrpf.drm
Item derivatives with respect to the location in the latent spacerpf.dTheta rpf.dTheta,rpf.base,numeric,matrix,numeric-method rpf.dTheta,rpf.base,numeric,numeric,numeric-method _rpf_dTheta
Create monotonic polynomial generalized partial credit (GPC-MP) modelrpf.gpcmp
Create a graded response modelrpf.grm
Create monotonic polynomial graded response (GR-MP) modelrpf.grmp
Convert an rpf item model name to an IDrpf.id_of
Map an item model, item parameters, and person trait score into a information vectorrpf.info
Create logistic function of a monotonic polynomial (LMP) modelrpf.lmp
Map an item model, item parameters, and person trait score into a probability vectorrpf.logprob rpf.logprob,rpf.1dim,numeric,matrix-method rpf.logprob,rpf.1dim,numeric,numeric-method rpf.logprob,rpf.mdim,numeric,matrix-method rpf.logprob,rpf.mdim,numeric,NULL-method rpf.logprob,rpf.mdim,numeric,numeric-method _rpf_logprob
Create a multiple-choice response modelrpf.mcm
Find the point where an item provides mean maximum informationrpf.mean.info
Find the point where an item provides mean maximum informationrpf.mean.info1
Create a similar item specification with the given number of factorsrpf.modify rpf.modify,rpf.mdim.drm,numeric-method rpf.modify,rpf.mdim.graded,numeric-method rpf.modify,rpf.mdim.nrm,numeric-method
Create a nominal response modelrpf.nrm
Length of the item parameter vectorrpf.numParam rpf.numParam,rpf.base-method rpf_numParam_wrapper
Length of the item model vectorrpf.numSpec rpf.numSpec,rpf.base-method rpf_numSpec_wrapper
The ogive constantrpf.ogive
Retrieve a description of the given parameterrpf.paramInfo rpf.paramInfo,rpf.base-method rpf_paramInfo_wrapper
Map an item model, item parameters, and person trait score into a probability vectorrpf.prob rpf.prob,rpf.1dim,numeric,matrix-method rpf.prob,rpf.1dim,numeric,numeric-method rpf.prob,rpf.1dim.grm,numeric,numeric-method rpf.prob,rpf.base,data.frame,numeric-method rpf.prob,rpf.base,matrix,matrix-method rpf.prob,rpf.base,matrix,numeric-method rpf.prob,rpf.mdim,numeric,matrix-method rpf.prob,rpf.mdim,numeric,NULL-method rpf.prob,rpf.mdim,numeric,numeric-method rpf.prob,rpf.mdim.grm,numeric,matrix-method rpf.prob,rpf.mdim.grm,numeric,numeric-method rpf.prob,rpf.mdim.mcm,numeric,matrix-method rpf.prob,rpf.mdim.nrm,numeric,matrix-method _rpf_prob
Rescale item parametersrpf.rescale rpf.rescale,rpf.base,numeric,numeric,matrix-method _rpf_rescale
Generates item parametersrpf.rparam rpf.rparam,rpf.1dim.drm-method rpf.rparam,rpf.1dim.gpcmp-method rpf.rparam,rpf.1dim.graded-method rpf.rparam,rpf.1dim.grmp-method rpf.rparam,rpf.1dim.lmp-method rpf.rparam,rpf.mdim.drm-method rpf.rparam,rpf.mdim.graded-method rpf.rparam,rpf.mdim.mcm-method rpf.rparam,rpf.mdim.nrm-method
Randomly sample response patterns given a list of itemsrpf.sample
Liking for Science datasetscience sfif sfpf sfsf sfxf
Compute the S fit statistic for a set of itemsSitemFit
Compute the S fit statistic for 1 itemSitemFit1
Strip data and scores from an IFA groupstripData
Compute the sum-score EAP tablesumScoreEAP
Conduct the sum-score EAP distribution testsumScoreEAPTest
Tabulate data.frame rowstabulateRows
Convert response function slopes to factor loadingstoFactorLoading
Convert response function intercepts to factor thresholdstoFactorThreshold
Write a flexMIRT PRM filewrite.flexmirt