Package: rpc 2.0.3

Somak Dutta

rpc: Ridge Partial Correlation

Computes the ridge partial correlation coefficients in a high or ultra-high dimensional linear regression problem. An extended Bayesian information criterion is also implemented for variable selection. Users provide the matrix of covariates as a usual dense matrix or a sparse matrix stored in a compressed sparse column format. Detail of the method is given in the manual.

Authors:Somak Dutta [aut, cre, cph], An Nguyen [aut, ctb], Run Wang [ctb], Vivekananda Roy [ctb]

rpc_2.0.3.tar.gz
rpc_2.0.3.tar.gz(r-4.5-noble)rpc_2.0.3.tar.gz(r-4.4-noble)
rpc_2.0.3.tgz(r-4.4-emscripten)rpc_2.0.3.tgz(r-4.3-emscripten)
rpc.pdf |rpc.html
rpc/json (API)

# Install 'rpc' in R:
install.packages('rpc', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))
Uses libs:
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

cppopenmp

1.00 score 3 exports 3 dependencies

Last updated 3 hours agofrom:c472cb36e6. Checks:3 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 22 2025
R-4.5-linux-x86_64OKMar 22 2025
R-4.4-linux-x86_64OKMar 22 2025

Exports:eBICrpcXXt.compute

Dependencies:latticeMatrixRcpp