Package: rminer 1.4.7
rminer: Data Mining Classification and Regression Methods
Facilitates the use of data mining algorithms in classification and regression (including time series forecasting) tasks by presenting a short and coherent set of functions. Versions: 1.4.7 improved Importance function and examples, minor error fixes; 1.4.6 / 1.4.5 / 1.4.4 new automated machine learning (AutoML) and ensembles, via improved fit(), mining() and mparheuristic() functions, and new categorical preprocessing, via improved delevels() function; 1.4.3 new metrics (e.g., macro precision, explained variance), new "lssvm" model and improved mparheuristic() function; 1.4.2 new "NMAE" metric, "xgboost" and "cv.glmnet" models (16 classification and 18 regression models); 1.4.1 new tutorial and more robust version; 1.4 - new classification and regression models, with a total of 14 classification and 15 regression methods, including: Decision Trees, Neural Networks, Support Vector Machines, Random Forests, Bagging and Boosting; 1.3 and 1.3.1 - new classification and regression metrics; 1.2 - new input importance methods via improved Importance() function; 1.0 - first version.
Authors:
rminer_1.4.7.tar.gz
rminer_1.4.7.tar.gz(r-4.5-noble)rminer_1.4.7.tar.gz(r-4.4-noble)
rminer_1.4.7.tgz(r-4.4-emscripten)rminer_1.4.7.tgz(r-4.3-emscripten)
rminer.pdf |rminer.html✨
rminer/json (API)
# Install 'rminer' in R: |
install.packages('rminer', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
- sa_fri1 - Synthetic regression and classification datasets for measuring input importance of supervised learning models
- sa_int2 - Synthetic regression and classification datasets for measuring input importance of supervised learning models
- sa_int2_3c - Synthetic regression and classification datasets for measuring input importance of supervised learning models
- sa_int2_8p - Synthetic regression and classification datasets for measuring input importance of supervised learning models
- sa_psin - Synthetic regression and classification datasets for measuring input importance of supervised learning models
- sa_ssin - Synthetic regression and classification datasets for measuring input importance of supervised learning models
- sa_ssin_2 - Synthetic regression and classification datasets for measuring input importance of supervised learning models
- sa_ssin_n2p - Synthetic regression and classification datasets for measuring input importance of supervised learning models
- sa_tree - Synthetic regression and classification datasets for measuring input importance of supervised learning models
- sin1reg - Sin1 regression dataset
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 6 days agofrom:e5eba963d0. Checks:OK: 2. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 24 2024 |
R-4.5-linux | OK | Oct 24 2024 |
Exports:agg_matrix_impCasesSeriescentralparcmatrixplotcrossvaldatadatalevelsdelevelsfactorizefitforplotholdoutImportanceimputationlforecastloadminingloadmodelmeanintmetricsmgraphminingmmetricmparheuristicmpausepredictRECcurvermboxplotROCcurves_measuresaveminingsavemodeltsplotvecplot
Dependencies:adabagbase64encbslibcachemcaretclasscliclockcodetoolscoincolorspaceConsRankcpp11Cubistdata.tablediagramdigestdoParalleldplyre1071evaluatefansifarverfastmapfontawesomeforeachfsfuturefuture.applygenericsggplot2glmnetglobalsgluegowergtablegtoolshardhathighrhtmltoolshtmlwidgetsigraphipredisobanditeratorsjquerylibjsonlitekernlabKernSmoothkknnknitrlabelinglatticelavalibcoinlifecyclelistenvlubridatemagrittrMASSMatrixmatrixStatsmdamemoisemgcvmimeModelMetricsmodeltoolsmultcompmunsellmvtnormnlmennetnumDerivparallellypartypillarpkgconfigplotrixplsplyrpROCprodlimprogressrproxypurrrR6randomForestrappdirsRColorBrewerRcppRcppEigenrecipesreshape2rglrlangrlistrmarkdownrpartsandwichsassscalesshapeSQUAREMstringistringrstrucchangesurvivalTH.datatibbletidyrtidyselecttimechangetimeDatetinytextzdbutf8vctrsviridisLitewithrxfunxgboostXMLyamlzoo