Package: remotePARTS 1.0.4
remotePARTS: Spatiotemporal Autoregression Analyses for Large Data Sets
These tools were created to test map-scale hypotheses about trends in large remotely sensed data sets but any data with spatial and temporal variation can be analyzed. Tests are conducted using the PARTS method for analyzing spatially autocorrelated time series (Ives et al., 2021: <doi:10.1016/j.rse.2021.112678>). The method's unique approach can handle extremely large data sets that other spatiotemporal models cannot, while still appropriately accounting for spatial and temporal autocorrelation. This is done by partitioning the data into smaller chunks, analyzing chunks separately and then combining the separate analyses into a single, correlated test of the map-scale hypotheses.
Authors:
remotePARTS_1.0.4.tar.gz
remotePARTS_1.0.4.tar.gz(r-4.5-noble)remotePARTS_1.0.4.tar.gz(r-4.4-noble)
remotePARTS_1.0.4.tgz(r-4.4-emscripten)remotePARTS_1.0.4.tgz(r-4.3-emscripten)
remotePARTS.pdf |remotePARTS.html✨
remotePARTS/json (API)
NEWS
# Install 'remotePARTS' in R: |
install.packages('remotePARTS', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/morrowcj/remoteparts/issues
- ndvi_AK10000 - NDVI remote sensing data for 10,000 random pixels from Alaska, with rare land classes removed.
- partGLS_ndviAK - Partitioned GLS results
Last updated 1 years agofrom:aa1aa997c7. Checks:OK: 2. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Dec 10 2024 |
R-4.5-linux-x86_64 | OK | Dec 10 2024 |
Exports:check_posdefchisqrcovar_expcovar_exppowcovar_taperdistm_kmdistm_scaledfitARfitAR_mapfitCLSfitCLS_mapfitCorfitGLSfitGLS_optfitGLS_partitioninvert_cholmulticore_fitGLS_partitionpart_csvpart_datasample_partitions
Dependencies:codetoolsCompQuadFormdoParallelforeachgeosphereiteratorslatticeRcppRcppEigensp