Package: regmhmm 1.0.0

Man Chong Leong

regmhmm: 'regmhmm' Fits Hidden Markov Models with Regularization

Designed for longitudinal data analysis using Hidden Markov Models (HMMs). Tailored for applications in healthcare, social sciences, and economics, the main emphasis of this package is on regularization techniques for fitting HMMs. Additionally, it provides an implementation for fitting HMMs without regularization, referencing Zucchini et al. (2017, ISBN:9781315372488).

Authors:Man Chong Leong [cre, aut]

regmhmm_1.0.0.tar.gz
regmhmm_1.0.0.tar.gz(r-4.5-noble)regmhmm_1.0.0.tar.gz(r-4.4-noble)
regmhmm_1.0.0.tgz(r-4.4-emscripten)regmhmm_1.0.0.tgz(r-4.3-emscripten)
regmhmm.pdf |regmhmm.html
regmhmm/json (API)

# Install 'regmhmm' in R:
install.packages('regmhmm', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/henryleongstat/regmhmm/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library

2.70 score 119 downloads 13 exports 13 dependencies

Last updated 12 months agofrom:354515cb38. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKOct 30 2024
R-4.5-linux-x86_64OKOct 30 2024

Exports:backwardcompute_joint_statecompute_loglikelihoodcompute_stateforwardforward_backwardHMMHMM_C_rawHMM_one_stepIRLS_EMrHMMrHMM_one_stepsimulate_HMM_data

Dependencies:codetoolsforeachglmnetglmnetUtilsiteratorslatticeMASSMatrixRcppRcppArmadilloRcppEigenshapesurvival

regmhmm

Rendered fromregmhmm.Rmdusingknitr::rmarkdownon Oct 30 2024.

Last update: 2023-12-05
Started: 2023-12-05