Package: regmed 2.1.0

Jason Sinnwell

regmed: Regularized Mediation Analysis

Mediation analysis for multiple mediators by penalized structural equation models with different types of penalties depending on whether there are multiple mediators and only one exposure and one outcome variable (using sparse group lasso) or multiple exposures, multiple mediators, and multiple outcome variables (using lasso, L1, penalties).

Authors:Jason Sinnwell [aut, cre], Daniel Schaid [aut]

regmed_2.1.0.tar.gz
regmed_2.1.0.tar.gz(r-4.5-noble)regmed_2.1.0.tar.gz(r-4.4-noble)
regmed_2.1.0.tgz(r-4.4-emscripten)regmed_2.1.0.tgz(r-4.3-emscripten)
regmed.pdf |regmed.html
regmed/json (API)
NEWS

# Install 'regmed' in R:
install.packages('regmed', repos = 'https://cloud.r-project.org')
Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
Datasets:
  • med - Simulated dataset for regmed package
  • x - Simulated dataset for regmed package
  • y - Simulated dataset for regmed package

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

openblascpp

3.00 score 2 stars 223 downloads 23 exports 26 dependencies

Last updated 2 years agofrom:99e05fccb9. Checks:1 OK, 2 NOTE. Indexed: no.

TargetResultLatest binary
Doc / VignettesOKMar 22 2025
R-4.5-linux-x86_64NOTEMar 22 2025
R-4.4-linux-x86_64NOTEMar 22 2025

Exports:mvregmed.edgesmvregmed.fitmvregmed.gridmvregmed.grid.bestfitmvregmed.lavaan.datmvregmed.lavaan.modelplot.mvregmed.edgesplot.mvregmed.gridplot.regmed.edgesplot.regmed.gridprint.regmedprint.regmed.gridregmed.edgesregmed.fitregmed.gridregmed.grid.bestfitregmed.lavaan.datregmed.lavaan.modelregmed.prefiltersummary.lavaansummary.mvregmedsummary.mvregmed.gridsummary.regmed

Dependencies:clicpp11evaluateglassogluegtoolshighrigraphknitrlatticelavaanlifecyclemagrittrMASSMatrixmnormtnumDerivpbivnormpkgconfigquadprogRcppRcppArmadillorlangvctrsxfunyaml

Regularized_Mediation_Examples

Rendered fromregmed.Rmdusingknitr::rmarkdownon Mar 22 2025.

Last update: 2023-01-20
Started: 2021-04-12

Citation

To cite package ‘regmed’ in publications use:

Sinnwell J, Schaid D (2023). regmed: Regularized Mediation Analysis. R package version 2.1.0, https://CRAN.R-project.org/package=regmed.

Corresponding BibTeX entry:

  @Manual{,
    title = {regmed: Regularized Mediation Analysis},
    author = {Jason Sinnwell and Daniel Schaid},
    year = {2023},
    note = {R package version 2.1.0},
    url = {https://CRAN.R-project.org/package=regmed},
  }

Readme and manuals

The regmed Packageregmed

Mediation analysis for multiple mediators by penalized structural equation models using sparse group lasso. The penalty considers the natural groupings of parameters that determine mediation, as well as encourages sparseness of the model parameters.

The regmed.grid() Functionregmed.grid()

regmed.grid() is a function that fits regularized mediation models over a vector grid of lambda penalty values. Structural equation models for analysis of multiple mediators are extended by creating a sparse group lasso penalized model such that the penalty considers the natural groupings of the pair of parameters that determine mediation, as well as encourages sparseness of the model parameters.

The regmed.fit() Functionregmed.fit()

regmed.fit() fits a regularized mediation model for a specified lambda penalty value. We provide summary and plot methods implemented on the S3 class created by the function.

Publication

Help Manual

Help pageTopics
Regularized Mediation Analysisregmed-package regmed
Simulated dataset for regmed packagemed medsim x y
Helper function to check x, y, mediator for input to mvregmed functionsmvregmed.dat.check regmed.dat.check
For an object of class mvregmed, create edges for a graph object that can be used for plots, or for creating models input to lavaan function semmvregmed.edges plot.mvregmed.edges
Multivariate regularized mediation modelmvregmed.fit
Setup attributes of graph object for plottingmvregmed.graph.attributes
Fit a grid of mvregmed models over a vector of lambda penalty parametersmvregmed.grid summary.mvregmed.grid
Choose best fit model from a grid search based on minimum Bayesian Information Criterionmvregmed.grid.bestfit
Helper function to summarize fits of models across a grid of lambda valuesmvregmed.grid.data
Helper function to update parameters in a grid searchmvregmed.grid.update
Helper function to setup data and parameters for input to mvregmed.fit and mvregmed.gridmvregmed.init
Set up data to input to lavaan semmvregmed.lavaan.dat
Setup a model for input to lavaanmvregmed.lavaan.model
Plot penalty parameter lambda versus BIC for model fitsplot.mvregmed.grid
Plots for regmed.grid object.plot.regmed.grid
For an object of class regmed, create edges for a graph object that can be used for plots, or for creating models input to lavaan function semplot.regmed.edges regmed.edges
Regularized Mediation model for a specified lambda penalty value.print.regmed regmed.fit summary.regmed
Regularized mediation models over a vector grid of lambda penalty values.print.regmed.grid regmed.grid summary.regmed.grid
Find best fitting regmed model from regmed.grid object.regmed.grid.bestfit
Set up data to input to lavaan semregmed.lavaan.dat
Create a lavaan modelregmed.lavaan.model summary.lavaan
Prefilter to reduce the number of mediators for subsequent analysesregmed.prefilter
Summary of mvregmed objectsummary.mvregmed