Package: rare 0.1.1

Xiaohan Yan

rare: Linear Model with Tree-Based Lasso Regularization for Rare Features

Implementation of an alternating direction method of multipliers algorithm for fitting a linear model with tree-based lasso regularization, which is proposed in Algorithm 1 of Yan and Bien (2018) <arxiv:1803.06675>. The package allows efficient model fitting on the entire 2-dimensional regularization path for large datasets. The complete set of functions also makes the entire process of tuning regularization parameters and visualizing results hassle-free.

Authors:Xiaohan Yan [aut, cre], Jacob Bien [aut, cre]

rare_0.1.1.tar.gz
rare_0.1.1.tar.gz(r-4.5-noble)rare_0.1.1.tar.gz(r-4.4-noble)
rare_0.1.1.tgz(r-4.4-emscripten)rare_0.1.1.tgz(r-4.3-emscripten)
rare.pdf |rare.html
rare/json (API)

# Install 'rare' in R:
install.packages('rare', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/yanxht/rare/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
Datasets:
  • data.dtm - Document-term matrix for adjectives in TripAdvisor hotel reviews
  • data.hc - Hierarchical clustering tree for adjectives in TripAdvisor data set
  • data.rating - TripAdvisor hotel review ratings

openblascpp

2.59 score 1 packages 13 scripts 124 downloads 1 mentions 7 exports 11 dependencies

Last updated 6 years agofrom:f701d3d5d2. Checks:OK: 2. Indexed: no.

TargetResultDate
Doc / VignettesOKDec 22 2024
R-4.5-linux-x86_64OKDec 22 2024

Exports:find.leavesgroup.plotgroup.recoverrarefitrarefit.cvrarefit.predicttree.matrix

Dependencies:codetoolsforeachglmnetiteratorslatticeMatrixRcppRcppArmadilloRcppEigenshapesurvival

Using the rare package

Rendered fromrare-vignette.Rmdusingknitr::rmarkdownon Dec 22 2024.

Last update: 2018-08-03
Started: 2018-03-22