Package: quantreg 5.99.1
quantreg: Quantile Regression
Estimation and inference methods for models for conditional quantile functions: Linear and nonlinear parametric and non-parametric (total variation penalized) models for conditional quantiles of a univariate response and several methods for handling censored survival data. Portfolio selection methods based on expected shortfall risk are also now included. See Koenker, R. (2005) Quantile Regression, Cambridge U. Press, <doi:10.1017/CBO9780511754098> and Koenker, R. et al. (2017) Handbook of Quantile Regression, CRC Press, <doi:10.1201/9781315120256>.
Authors:
quantreg_5.99.1.tar.gz
quantreg_5.99.1.tar.gz(r-4.5-noble)quantreg_5.99.1.tar.gz(r-4.4-noble)
quantreg_5.99.1.tgz(r-4.4-emscripten)quantreg_5.99.1.tgz(r-4.3-emscripten)
quantreg.pdf |quantreg.html✨
quantreg/json (API)
# Install 'quantreg' in R: |
install.packages('quantreg', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
- Bosco - Boscovich Data
- CobarOre - Cobar Ore data
- Mammals - Garland(1983) Data on Running Speed of Mammals
- MelTemp - Daily maximum temperatures in Melbourne, Australia
- Peirce - C.S. Peirce's Auditory Response Data
- barro - Barro Data
- engel - Engel Data
- gasprice - Time Series of US Gasoline Prices
- uis - UIS Drug Treatment study data
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 3 days agofrom:413d32c8ad. Checks:OK: 2. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 25 2024 |
R-4.5-linux-x86_64 | OK | Nov 25 2024 |
Exports:AIC.nlrqAIC.rqAIC.rqsAIC.rqssakjanova.rqanova.rqlistanova.rqsbandwidth.rqboot.crqboot.rqboot.rq.mcmbboot.rq.pwxyboot.rq.pwyboot.rq.pxyboot.rq.spwyboot.rq.wxyboot.rq.xyChangeLogcoef.crqcoef.nlrqcomboscritvalcrqcrq.fit.pencrq.fit.porcrq.fit.por2crq.fit.powCurvdeviance.nlrqditherdynrqend.dynrqextractAIC.nlrqextractAIC.rqFAQfitted.nlrqfitted.rqssformula.nlrqformula.rqHillHill.fitindex.dynrqKhmaladzeTestkselectkuantilekuniqueLassoLambdaHatlatexlatex.summary.rqslatex.tablelatex.table.rqlm.fit.recursivelogLik.nlrqlogLik.rqlogLik.rqslogLik.rqsslprqMungenlrqnlrq.controlnlrqModelParetoTestPickandsPickands.fitplot.qss1plot.qss2plot.rq.processplot.rqsplot.rqssplot.summary.crqsplot.summary.rqsplot.summary.rqssplot.table.rqpredict.crqpredict.crqspredict.nlrqpredict.qss1predict.qss2predict.rqpredict.rq.processpredict.rqspredict.rqssprint.anova.rqprint.crqprint.dynrqprint.dynrqsprint.Hillprint.nlrqprint.Pickandsprint.rqprint.rqsprint.rqssprint.summary.crqprint.summary.crqsprint.summary.dynrqprint.summary.dynrqsprint.summary.Hillprint.summary.nlrqprint.summary.Pickandsprint.summary.rqprint.summary.rqsprint.summary.rqssq489qriskqssqss1qss2QTECoxqts1ranksrearrangeresid.rqssresiduals.nlrqrqrq.fitrq.fit.brrq.fit.conquerrq.fit.fnbrq.fit.fncrq.fit.hoggrq.fit.lassorq.fit.pfnrq.fit.pfnbrq.fit.pprorq.fit.qfnbrq.fit.scadrq.fit.sfnrq.fit.sfncrq.test.anowarrq.test.rankrq.wfitrqProcessrqs.fitrqssrqss.fitsfn.controlsfnMessagesriskstart.dynrqsummary.crqsummary.crqssummary.dynrqssummary.Hillsummary.nlrqsummary.Pickandssummary.rqsummary.rqssummary.rqsstable.rqtau.nlrqtriogram.fidelitytriogram.penaltyuntangle.specials