Package: quadVAR 0.1.2

Jingmeng Cui

quadVAR: Quadratic Vector Autoregression

Estimate quadratic vector autoregression models with the strong hierarchy using the Regularization Algorithm under Marginality Principle (RAMP) by Hao et al. (2018) <doi:10.1080/01621459.2016.1264956>, compare the performance with linear models, and construct networks with partial derivatives.

Authors:Jingmeng Cui [aut, cre]

quadVAR_0.1.2.tar.gz
quadVAR_0.1.2.tar.gz(r-4.5-noble)quadVAR_0.1.2.tar.gz(r-4.4-noble)
quadVAR_0.1.2.tgz(r-4.4-emscripten)quadVAR_0.1.2.tgz(r-4.3-emscripten)
quadVAR.pdf |quadVAR.html
quadVAR/json (API)
NEWS

# Install 'quadVAR' in R:
install.packages('quadVAR', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/sciurus365/quadvar/issues

Pkgdown site:https://sciurus365.github.io

1.70 score 3 scripts 10 exports 102 dependencies

Last updated 8 days agofrom:8ba2d6811f. Checks:2 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 11 2025
R-4.5-linuxOKFeb 11 2025

Exports:%>%block_cvcompare_4_emolinear_quadVAR_networkpartial_plotquadVARquadVAR_to_dyn_eqnssim_4_emotrue_model_4_emotune.fit

Dependencies:abindbackportsbase64encbslibcachemcheckmatecliclustercolorspacecommonmarkcorpcorcpp11crayondata.tabledigestdplyrevaluatefansifarverfastmapfdrtoolfontawesomeforeignFormulafsgenericsggplot2glassoglueGPArotationgridExtragtablegtoolshighrHmischtmlTablehtmltoolshtmlwidgetshttpuvigraphisobandjpegjquerylibjsonliteknitrlabelinglaterlatticelavaanlifecyclemagrittrMASSMatrixmemoisemgcvmimemnormtmunsellncvregnlmennetnumDerivpbapplypbivnormpillarpkgconfigplyrpngpromisespsychpurrrqgraphquadprogR6RAMPrappdirsRColorBrewerRcppreshape2rlangrmarkdownrpartrstudioapisassscalesshinyshinythemessourcetoolsstringistringrtibbletidyrtidyselecttinytexutf8vctrsviridisviridisLitewithrxfunxtableyaml